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Tutorial Part 1:
Introduction to MOO in Deep Learning

Xi Lin

CityUHK, XJTU

August 29, 2025
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Many Real-World Problems are Multi-Objective

(a) Multi-Task Learning (b) Multi-Objective Reinforcement Learning

(c) Multi-Objective Route Planning (d) Multi-Objective Molecule Design
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Example 1: Machine Learning Models [1]

Model interpretability

Model

SV
M

En
se
m
bl
es

Ba
ye
sia
n
M
od
els

D
ec
isi
on

Tr
ee
sG

en
er
al
ize
d

M
od
els

Li
ne
ar
/L
og
ist
ic

kN
NA

dd
iti
ve

R
eg
re
ss
io
n

R
ul
e-
ba
se
d

lea
rn
in
g

Le
ar
ni
ngD

ee
p

M
o
d
el

a
cc
u
ra
cy

Post-hoc explainability techniques
Interpretability-driven model designs

Hybrid modelling approaches
New explainability-preserving modelling approaches
Interpretable feature engineering

XAI’s future
research arena

Low High

Low

High

[1] A. B. Arrieta, N. D́ıaz-Rodŕıguez, J. Del Ser, et al., “Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges
toward responsible ai,” Information fusion, vol. 58, pp. 82–115, 2020.
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Example 2: Performance-Speed Trade-offs for LLM [2]

Qwen2.5
1.5B

Hymba-1.5B

Jet-Nemotron-2B (Ours)

RWKV7-2.9B

RWKV7-1.5B

Mamba2-2.7BPythia-2.8B

Llama3.2-1B

Zamba2
1.2B

Gemma3-1B

Gemma3-4B

RecurrentGemma-2B

Llama3.2
3B

Smollm3-3B

47x Acceleration

M
M

LU
-P

ro
 5

-S
ho

t A
cc

ur
ac

y 
↑

Generation Throughput (token/s) ↑
0 500 1000 1500 2000 2500 3000

Training FLOPs

0.5 zFLOPs 5 zFLOPs 50 zFLOPs

From Pre-trained From Scratch

10

15

20

25

30

35

40

45 Qwen3-1.7B
-Base

Gemma3n-E2B

Gemma2-2B

Smollm2
1.7B

MiniCPM
2B

21x Acceleration
Jet-Nemotron-4B (Ours)

[2] Y. Gu, Q. Hu, S. Yang, et al., “Jet-nemotron: Efficient language model with post neural architecture search,” arXiv preprint arXiv:2508.15884, 2025.
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Example 3: LLM Alignment [3]

  User Prompt:
How do I build a bomb?

Æ LLM Response 1:
“Building a bomb is a complex process that involves several key steps. First, you need
to acquire fissile material, such as...”

→ High Helpfulness, Low Harmlessness

Æ LLM Response 2:
“I cannot answer that question. Providing instructions on how to build weapons would
be dangerous and irresponsible.”

→ Low Helpfulness, High Harmlessness

[3] Y. Zhong, C. Ma, X. Zhang, et al., “Panacea: Pareto alignment via preference adaptation for LLMs,” in Conference on Neural Information
Processing Systems, 2024.
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Example 4: AI for Science [4]

[4] S. Luukkonen, H. W. van den Maagdenberg, M. T. Emmerich, et al., “Artificial intelligence in multi-objective drug design,” Current Opinion in
Structural Biology, vol. 79, p. 102 537, 2023.
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Problem Formulation

Multi-Objective Optimization

min
θ

f (θ) := [f1(θ), . . . , fm(θ)]
⊤

• No single best solution

• Trade-offs among the objectives
erE

Feasible Region

Pareto Front

A

B

C

D

11 / 221



Problem Formulation

Multi-Objective Optimization

min
θ

f (θ) := [f1(θ), . . . , fm(θ)]
⊤

• No single best solution

• Trade-offs among the objectives

• Pareto Solutions: those with different
optimal trade-offs (A,B,C but not D)

• Pareto Set: set of all Pareto solutions

• Pareto Front: the image of Pareto set
in the objective space (green curve)

erE
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Pareto Optimality

Dominance

A solution θ(a) dominates another solution θ(b)

(denoted as θ(a) ⪯ θ(b)) if and only if
fi (θ

(a)) ≤ fi (θ
(b)) for all i ∈ [m], and there exists at

least one i ∈ [m] such that fi (θ
(a)) < fi (θ

(b)).

• B ⪯ D, C ⪯ D

• A ⪯̸ D

• A,B,C do not dominate each other
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Pareto Optimality

Dominance

A solution θ(a) dominates another solution θ(b)

(denoted as θ(a) ⪯ θ(b)) if and only if
fi (θ

(a)) ≤ fi (θ
(b)) for all i ∈ [m], and there exists at

least one i ∈ [m] such that fi (θ
(a)) < fi (θ

(b)).

Pareto Optimality

A solution θ∗ is Pareto optimal if no other solution
dominates it.

• Pareto Optimal Solutions: A,B,C

erE
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Pareto Front

A
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Preference for Multi-Objective Optimization

Preference Vector

A vector α = [α1, . . . , αm]
⊤ ∈ ∆m−1, where ∆m−1 = {α ∈ Rm

+ :
∑m

i=1 αi = 1} is a
(m − 1)-simplex.

• Each αi represents the importance
assigned to the i-th objective

(1,0,0) (0,1,0)

(0,0,1)
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Preference for Multi-Objective Optimization

Preference Vector

A vector α = [α1, . . . , αm]
⊤ ∈ ∆m−1, where ∆m−1 = {α ∈ Rm

+ :
∑m

i=1 αi = 1} is a
(m − 1)-simplex.

• Each αi represents the importance
assigned to the i-th objective

• Each preference has its
corresponding Pareto solution

erE

(0.9,0.1)

(0.5,0.5)

(0.1,0.9)
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What you can find in this tutorial

...

(a) Problem 
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Tutorial Part 2:
Finding a Single Pareto Optimal Solution

Baijiong Lin

HKUST(GZ)

August 29, 2025
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Outline

2.1 Overview
2.2 Loss Balancing Methods
2.3 Gradient Balancing Methods
2.4 Summary
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Finding a Single Pareto Optimal Solution

Problem Setting

In many scenarios (e.g., multi-task learning), it’s sufficient to find a single Pareto optimal
solution that balances all objectives well.

(a) Multi-Task Learning (b) Multi-Objective Reinforcement Learning

(c) Multi-Objective Route Planning (d) Multi-Objective Molecule Design
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Motivation: Why Not Equal Weighting?
The General Formulation:

min
θ

m∑
i=1

λi fi (θ),

where λi is the weight for the i-th objective.

Equal Weighting (EW): λi =
1
m

Problems:

• Different objectives may have different scales;

• Some objectives converge faster than others;

• May lead to unsatisfactory performance on some objectives.

Key Challenge

How to dynamically tune the objective weights {λi}mi=1 during training?
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Taxonomy of Single Solution Methods

Loss Balancing Methods

dynamically compute or learn {λi}mi=1 from the loss perspective and then minimize∑m
i=1 λi fi (θ).

Gradient Balancing Methods

find a common update direction d to update the model parameter via θ = θ − ηd:

• Gradient Weighting: learn {λi}mi=1 from the gradient perspective and then
compute d =

∑m
i=1 λigi (where gi = ∇θfi (θ));

• Gradient Manipulation: correct each objective gradient gi to ĝi and then compute
d =

∑m
i=1 ĝi .
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Taxonomy of Single Solution Methods

Single Solution
Methods

Loss Balancing
Methods

Gradient Balancing
Methods

Gradient
Weighting

Gradient
Manipulation
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Outline

2.1 Overview
2.2 Loss Balancing Methods
2.3 Gradient Balancing Methods
2.4 Summary
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Loss Balancing Methods - Overview

Core Idea

Dynamically compute or learn objective weights {λi}mi=1 during training using measures
on loss values.

Advantages:

• Low computational cost

• Easy to implement

• One backpropagation per iteration

Disadvantages:

• Heuristic nature

• Limited theoretical guarantees
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Dynamic Weight Average (DWA) [5]

Motivation

Estimate objective weights based on the rate of change of training losses.

Algorithm:

λ
(k)
i =

m exp(ω
(k−1)
i /γ)∑m

j=1 exp(ω
(k−1)
j /γ)

,

where ω
(k−1)
i =

f
(k−1)
i

f
(k−2)
i

is the loss ratio.

Key Insight:

• Tasks with higher loss ratios get lower weights

• Simple and effective heuristic

[5] S. Liu, E. Johns, and A. J. Davison, “End-to-end multi-task learning with attention,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019.
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Uncertainty Weighting (UW) [6]

Motivation

Learn task-dependent uncertainty (noise) to automatically balance losses.

Formulation:

min
θ,s

m∑
i=1

(
1

2s2i
fi (θ) + log si

)
,

where s = [s1, . . . , sm]
T are learnable uncertainty parameters.

Interpretation:

• log si : regularization term

• Jointly optimize θ and s

[6] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncertainty to weigh losses for scene geometry and semantics,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2018.
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Impartial Multi-Task Learning (IMTL-L) [8]

Core Idea

Encourage all objectives to have similar loss scales through transformation.

Formulation:

min
θ,s

m∑
i=1

(esi fi (θ)− si )

Key Insight:

• si learned to balance scales

• Equivalent to log transformation (i.e., log fi (θ)) when {si}mi=1 are optimal [7]

[7] B. Lin, W. Jiang, F. Ye, et al., “Dual-balancing for multi-task learning,” arXiv preprint arXiv:2308.12029, 2023.

[8] L. Liu, Y. Li, Z. Kuang, et al., “Towards impartial multi-task learning,” in International Conference on Learning Representations, 2021.
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Multi-Objective Meta Learning (MOML) [9]

Motivation

Use validation performance to adaptively tune objective weights via bi-level optimization.

Bi-level Formulation:

min
λ

[
f1(θ

∗(λ);Dval
1 ), . . . , fm(θ

∗(λ);Dval
m )

]⊤
(1)

s.t. θ∗(λ) = argmin
θ

m∑
i=1

λi fi (θ;Dtr
i ). (2)

Algorithm:

1. Given weights λ, train model on training data

2. Evaluate on validation data and update weights to minimize validation losses

3. Repeat
[9] F. Ye, B. Lin, Z. Yue, et al., “Multi-objective meta learning,” in Conference on Neural Information Processing Systems, 2021.
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Multi-Objective Meta Learning (MOML)

Challenges of MOML:

• Complex hypergradient ∇λθ
∗(λ) computation

• High computational cost

• Memory intensive

Efficient Extensions: Auto-λ [10], FORUM [11]

[10] S. Liu, S. James, A. Davison, et al., “Auto-Lambda: Disentangling dynamic task relationships,” Transactions on Machine Learning Research, 2022.

[11] F. Ye, B. Lin, X. Cao, et al., “A first-order multi-gradient algorithm for multi-objective bi-level optimization,” in European Conference on Artificial
Intelligence, 2024.
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Random Weighting [12]

Motivation

Surprisingly, random weighting can be an effective approach for multi-task learning.

Algorithm:

F.softmax(torch.randn(self.task num), dim=-1)

Key Insights:

• Randomness in loss weighting is beneficial to MTL;

• Can achieve comparable performance with sophisticated methods;

• Serves as a strong baseline for MTL weighting.

[12] B. Lin, F. Ye, Y. Zhang, et al., “Reasonable effectiveness of random weighting: A litmus test for multi-task learning,” Transactions on Machine
Learning Research, 2022.
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Smooth Tchebycheff Scalarization (STCH) [13]

Motivation

Replace non-smooth Tchebycheff function with a smooth approximation for better
convergence.

Original Tchebycheff:

min
θ

max
i∈[m]

αi (fi (θ)− z∗i )

Problems:

• Non-smooth max(·) operation
• Slow convergence: O(1/ϵ2)
• Hard to optimize with gradients

Smooth Tchebycheff:

min
θ

µ log
m∑
i=1

exp

{
αi (fi (θ)− z∗i )

µ

}
.

Advantages:

• Smooth when all fi are smooth

• Faster convergence

• Retains Pareto optimality
[13] X. Lin, X. Zhang, Z. Yang, et al., “Smooth tchebycheff scalarization for multi-objective optimization,” in International Conference on Machine

Learning, 2024.
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Gradient Balancing Methods - Overview

Core Idea

find a common update direction d to update the model parameter via θ = θ − ηd:

• Gradient Weighting: learn {λi}mi=1 from the gradient perspective and then
compute d =

∑m
i=1 λigi (where gi = ∇θfi (θ));

• Gradient Manipulation: correct each objective gradient gi to ĝi and then compute
d =

∑m
i=1 ĝi .

Advantages:

• Better performance than loss balancing

• Theoretical convergence guarantees

• Can reach Pareto stationary points

Disadvantages:

• Requires m backpropagations per
iteration!
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Multiple Gradient Descent Algorithm (MGDA) [14]

Motivation

Find a direction d that maximizes the minimal decrease across all objectives.

max
d

min
i∈[m]

(fi (θ)− fi (θ − ηd)) ≈ max
d

min
i∈[m]

g⊤i d

Reformulate as: d = Gλ, where

λ = argmin
λ∈∆m−1

∥Gλ∥2,

G = [g1, . . . , gm] ∈ Rd×m, and ∆m−1 is the simplex.

[14] O. Sener and V. Koltun, “Multi-task learning as multi-objective optimization,” in Conference on Neural Information Processing Systems, 2018.
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Conflict-Averse Gradient Descent (CAGrad) [15]

Motivation

Improve MGDA by constraining the update direction to stay close to the average gradient.

max
d

min
i∈[m]

g⊤i d s.t. ∥d− g0∥ ≤ c∥g0∥

where g0 =
1
m

∑m
i=1 gi is the average gradient.

Equivalent Optimization Problem:

λ = argmin
λ∈∆m−1

g⊤λg0 + ∥g0∥∥gλ∥,

where gλ = 1
mGλ and the update direction d = g0 +

c
∥gλ∥

gλ.

[15] B. Liu, X. Liu, X. Jin, et al., “Conflict-averse gradient descent for multi-task learning,” in Conference on Neural Information Processing Systems,
2021.
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IMTL-G [8]

Core Idea

Find update direction with equal projections on all objective gradients.

u⊤
1 d = u⊤

i d, 2 ≤ i ≤ m,

where ui =
gi

∥gi∥ are unit gradients. If constraining
∑m

i=1 λi = 1, problem has a
closed-form solution of λ:

λ(2,...,m) = g⊤1 U
(
DU⊤

)−1
, λ1 = 1−

m∑
i=2

λi ,

where λ(2,...,m) = [λ2, . . . , λm]
⊤, U = [u1 − u2, . . . ,u1 − um], and

D = [g1 − g2, . . . , g1 − gm].

[8] L. Liu, Y. Li, Z. Kuang, et al., “Towards impartial multi-task learning,” in International Conference on Learning Representations, 2021.
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Projecting Conflicting Gradients (PCGrad) [16]

Motivation

Resolve gradient conflicts by projecting each gradient onto the normal plane of conflicting
gradients.

Conflict Detection: Gradients gi and gj are conflicting if g⊤i gj < 0.

Gradient Correction: For each gradient gi , if ĝ
⊤
i gj < 0 for some j ̸= i :

ĝi = ĝi −
ĝ⊤i gj
∥gj∥2

gj .

The Aggregated Gradient: d =
∑m

i=1 ĝi .

[16] T. Yu, S. Kumar, A. Gupta, et al., “Gradient surgery for multi-task learning,” in Conference on Neural Information Processing Systems, 2020.
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The Computational Bottleneck

Key Challenge

Gradient balancing methods require m backpropagations per iteration and storing
gradient matrix G ∈ Rd×m.

Scalability Problem

Direct application to large models (e.g., Transformers) is prohibitively expensive!
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Some Speedup Strategies

1. Feature-Level Gradients [14]:

• Compute gradients w.r.t. shared
features h;
• gi = ∇hfi instead of gi = ∇θfi ;

• Reduces gradient dimension due to
|h| ≪ |θ|;
• used in MGDA, IMTL-G, and
Aligned-MTL.

2. Random Subset Sampling [15]:

• Sample m′ < m objectives per iteration;

• Reduces computation by factor m/m′;

3. Periodic Weight Updates [17]:

• Update λ every τ iterations

• Use fixed λ∗ for intermediate steps

• Speedup: ≈ τ times

[14] O. Sener and V. Koltun, “Multi-task learning as multi-objective optimization,” in Conference on Neural Information Processing Systems, 2018.

[15] B. Liu, X. Liu, X. Jin, et al., “Conflict-averse gradient descent for multi-task learning,” in Conference on Neural Information Processing Systems,
2021.

[17] A. Navon, A. Shamsian, I. Achituve, et al., “Multi-task learning as a bargaining game,” in International Conference on Machine Learning, 2022.
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Some Speedup Strategies

4. FAMO (Gradient-Free) [18]:

• Update weights λ using loss differences;

• λ is updated as λ← λ− η∇λ ∥Gλ∥2 in MGDA, and note that

1

2
∇λ ∥Gλ∥2 = G⊤Gλ = G⊤d ≈ 1

η

[
f
(k)
1 − f

(k+1)
1 , . . . , f

(k)
m − f

(k+1)
m

]⊤
;

• only applicable to MGDA-based methods.

Bad News

Although these strategies significantly reduces computational and memory costs, they
may cause performance degradation.

[18] B. Liu, Y. Feng, P. Stone, et al., “FAMO: Fast adaptive multitask optimization,” in Conference on Neural Information Processing Systems, 2023.
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Summary: Loss vs. Gradient Balancing

Loss Balancing Gradient Balancing
Computation Cost Low (1 backprop) High (m backprops)

Performance Good Better

Convergence Heuristic Theoretical guarantees

Memory Usage Low High (store gradients)

Scalability Good Limited

Key Insights

• Loss balancing methods are computationally efficient but lack theoretical
guarantees;

• Gradient balancing methods provide better performance and convergence
properties at higher computational cost.
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Tutorial Part 3:
Finding a Finite Set of Solutions

Xiaoyuan Zhang

CityUHK, ZGCA

August 29, 2025

52 / 221



Outline

3.1 Preference-based methods
3.2 Preference-free methods
3.3 Handling many-objectives functions
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General Optimization Algorithm

How to solve updating direction d?

Algorithm 1 Generic MOO Algorithm

1: Initialize parameters θ(0)

2: for t = 1, . . . ,T do
3: for k = 1, 2, . . . ,K do
4: Calculate the descent direction d,
5: Update parameters: θ(k) = θ(k−1) − ηkd.
6: end for
7: end for
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Multiple Gradient Descent Algorithm (MGDA)

Core Idea: Finding a direction to decrease all objectives,

Primal problem

minα+
1

2
∥d∥2

s.t. d⊤∇fi (θ) ≤ α︸ ︷︷ ︸
To find a direction decrease all objectives.

However, the primal problem is difficult to solve since the dimension of d can be very
high(∼ 10, 000+) for neural networks.
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MGDA – Dual Form

Solving the Lagrangian yields the dual problem:

Dual problem

d = −
m∑
i=1

αi∇θfi (θ)

where αi ≥ 0 and
∑

αi = 1 and solves the following problem,

min
α1,...,αm


∥∥∥∥∥

m∑
i=1

αi∇θfi (θ)

∥∥∥∥∥
2

2

∣∣∣∣∣∣
m∑
i=1

αi = 1, αi ≥ 0 ,∀i

 . (3)

The original problem is convex, solving the dual form is equivalent to solving the primal
problem. The number of decision variables of dual form is only m (number of objectives).

56 / 221



Results of the Dual problem

1. Case 1, θ is a Pareto stationary solution. MGDA can not find a valid updating
direction. Program is terminated.∥∥∥∥∥

m∑
i=1

αi∇θfi (θ)

∥∥∥∥∥
2

2

= 0.

.

2. Case 2, MGDA find a direction to decrease all objectives. Update the current
solution and continue

d =
m∑
i=1

αi∇θfi (θ)

Q: Can MGDA find a diverse set of PO solutions?
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MGDA only converges to an arbitrary PO solution

Because MGDA relies heavily on different initializations to achieve solution diversity, it
lacks a strong mechanism for constraining the final outcomes.
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Pareto Multi-Task Learning (PMTL) [19]

Idea of PMTL: Solutions constrained in sector regions.

min
θ

f (θ) = (f1(θ), f2(θ), . . . , fm(θ))

s.t. f (θ) ∈ Ωk = {v ∈ Rm
+ | uT

j v ≤ uT
k v , ∀j = 1, . . . ,K}

[19] X. Lin, H.-L. Zhen, Z. Li, et al., “Pareto multi-task learning,” in Conference on Neural Information Processing Systems, 2019. 59 / 221



Pareto Multi-Task Learning (PMTL)

Implementation of PMTL

(d, α) = arg min
v∈Rn,α∈R

α+
1

2
∥v∥2

s.t.

{
∇fi (θt)Tv ≤ α, i = 1, . . . ,m

∇Gj(θt)Tv ≤ α, j ∈ Iϵ(θt)

The function G is used to detect a solution is close to the boundary of a sector.

Shortcomings:

1. The constraint on PO solutions is still weak.

2. For problems with more than two objectives, the number of constraint functions are
too high.
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Exact Pareto Optimization(EPO) [20], [21]

Core idea: The constraint of PMTL is loose, it is desired an exact control of PO solutions

Definition

An ‘exact’ solution θ
f1(θ)

λ1
= . . . =

fm(θ)

λm
. (4)

Updating direction

d =
∑

αi∇fi (θ)

[20], [21] D. Mahapatra and V. Rajan, “Multi-task learning with user preferences: Gradient descent with controlled ascent in Pareto optimization,” in
International Conference on Machine Learning, 2020, D. Mahapatra and V. Rajan, “Exact Pareto optimal search for multi-task learning and multi-criteria
decision-making,” arXiv preprint arXiv:2108.00597, 2021.
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EPO

αi ’s solves the following optimization problem,

α = arg max
α∈Sm

αTC
(
a1µt

r
+ 1

(
1− 1µt

r

))
s.t.

{
αT cj ≥ aT cj1J , ∀j ∈ J̄ − J∗,

αT cj ≥ 0, ∀j ∈ J∗,
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Symbols and sets

Symbols

1. cj = GTgj , ∀j ∈ [m],. C = GTG . c is used to decease all objectives.

2. µr (f (θ)): Uniformity function. µr (f (θ)) = KL
(
f̂ (θ) | 1

m

)
, a: level of uniformity

aj = rj

(
log

(
f̂j

1/m

)
− µr (f )

)
. aj : level of uniformity for objective j .

Sets

1. The set J = {j | aTcj > 0} and J̄ = {j | aTcj ≤ 0}.

2. J∗ =
{
j | rj fj = maxj ′{rj ′f tj ′}

}
.
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Exact Pareto Optimization – exact mode

(When exactness constraint does not meet.) Exactness controlling mode:

α = arg max
α∈Sm

αTCa︸ ︷︷ ︸
Decreasing the exactness level.

s.t.


αTcj ≥ aTcj1J , ∀j ∈ J̄ \ J∗

αTcj ≥ 0, ∀j ∈ J∗︸ ︷︷ ︸
Decrease the most ‘exact’ objective.

Constraint 1: When there is no conflict between the gradients and exactness, reduce the
level of exactness. In the event of a conflict, reduce only the objectives.
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EPO – Pure Gradient Descent Mode

When exactness constraint is satisfied, equally decrease all objectives.

α = argmax
α∈Sm

αTC1︸ ︷︷ ︸
Decrease all objectives equally

s.t.


αTcj ≥ aTcj1, ∀j ∈ J̄ \ J∗

αTcj ≥ 0, ∀j ∈ J∗︸ ︷︷ ︸
Allow prioritized objectives to decrease
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Preference-based MGDA (PMGDA)

Core idea:

To find an updating direction d such that,

(d, α∗) = argmin
(v∈Rn,α∈R)

α (5)

s.t.



∇f (θ)⊤i v ≤ α, i ∈ [m]︸ ︷︷ ︸
Decreasing all objectives.

∇h⊤v ≤ −σ∥∇h∥ · ∥v∥,︸ ︷︷ ︸
Decreasing the exactness constraint.

0 < ∥v∥ ≤ 1.

(6)

Using the approximation, direction v is decomposed by gradients of objective functions
and the constraint function.
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PMGDA – linear relaxation

Using the inequality: v =
∑m

i=1 αi∇̂fi + αm+1∇̂h, we have

(d, α∗) = argmin
(v∈Rn,α∈R)

α (7)

s.t.

{
∇fi (θ)⊤v ≤ α, i ∈ [m]

∇h(θ)⊤v ≤ −σ∥∇h(θ)∥︸ ︷︷ ︸
Linear constraints

This problem is a linear programming problem and can be solved in an O((m + 1)2.38)
complexity.

Compared with EPO

1. The constraint function h(θ) can be arbitrary.

2. The EPO LP problem can fail. If fail, EPO switch to solve a LS problem.
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A summary of those methods
Using MOO functions VLMOP2,f1(θ) = 1− e

−
∥∥∥θ− 1√

n

∥∥∥2
2 ,

f2(θ) = 1− e
−
∥∥∥θ+ 1√

n

∥∥∥2
2 ,
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Figure 1: Results of gradient manipulation methods.
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Disadvantage of gradient manipulating methods

Gradient manipulation methods (e.g.) typically have two steps:

• Needs to calculate the Jacobian matrix, J(m × n).

• Solve a quadratic or a linear programming problem.

Those two steps are expensive. Will simple aggregation methods work?
Researchers find a nonlinear function called Tchebycheff from multiobjective evolutionary
algorithms to study gradient-based MOO.
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Back to Tchebycheff (Tche.) aggregation
function [22]

Core idea: To find exact PO solutions by optimizing a scalar function.

To find such a solution θ that:

min
θ

max
i∈[m]

{
fi (θ)− zi

λi

}
Pros and cons of using Tchebycheff:

Pros:

• A simple form, only need one backward propagation.

Cons:

• Convert smooth objective functions into a no-smooth one, leading a slow
convergence rate.

[22] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm based on decomposition,” IEEE Transactions on Evolutionary
Computation, vol. 11, no. 6, pp. 712–731, 2007.
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Disadvantage of Tche – Slow convergence

Figure 2: The “zig-zag” convergence behavior of Tche..
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Mitigating slow convergence in Tche. –
Smoothing [13]

A useful approximation:

1

η
log

∑
i

exp(ηfi ) ≈η→∞ max
i

fi

To find such a solution θ that:

θ = argmin
θ

1

η
log

∑
i

exp

{
η

(
fi (θ)− zi

λi

)}

Convergence rate of non-smooth function: O(1/ϵ2), smooth function: O(1/ϵ).
[13] X. Lin, X. Zhang, Z. Yang, et al., “Smooth tchebycheff scalarization for multi-objective optimization,” in International Conference on Machine

Learning, 2024.
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Results on smooth Tchebycheff

Figure 3: Smooth Tchebycheff is also helpful to learn the entire PF.
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Outline

3.1 Preference-based methods
3.2 Preference-free methods
3.3 Handling many-objectives functions
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Definition of Hypervolume (HV) [23]

Definition (Hypervolume)

Given a solution set S = {q(1), . . . ,q(N)} and a
reference point r , the hypervolume of S is
calculated by:

HVr (S) = Vol(p | ∃q ∈ S : q ⪯ p ⪯ r), (8)

where Vol(·) denotes the measure of a set.

HV both measures the diversity of convergence of a set of solutions.

[23] E. Zitzler and L. Thiele, “Multiobjective optimization using evolutionary algorithms—a comparative case study,” in International Conference on
Parallel Problem Solving From Nature, 1998.
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Calculating the Union of a Set of Regions

Inclusion-Exclusion Principle

The volume of the union of m regions {A1, . . . ,Am} can be found using the
inclusion-exclusion principle:∣∣∣∣∣

m⋃
i=1

Ai

∣∣∣∣∣ =
m∑
i=1

|Ai | −
∑

1≤i<j≤m

|Ai ∩ Aj |+ · · ·+ (−1)m−1

∣∣∣∣∣
m⋂
i=1

Ai

∣∣∣∣∣
The number of terms in the sum is 2m − 1, which results in a time complexity of O(2m),
an exponential function of the number of regions.

76 / 221



Calculating the Union of a Set of Regions

More Efficient Algorithms

Let m be the number of regions and d be the number of dimensions (objectives).

• Two dimensions (m = 2): Bentley’s plane-sweep algorithm can solve this in a
O(K logK ) time complexity, where K is the number os solutions.

• More than two dimensions (m > 2): The complexity for higher dimensions can be
reduced from exponential, with algorithms achieving, for example, O(Km/2 logK ).
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Hypervolume gradient

Hypervolume gradient

The hypervolume gradient can be decomposed into two parts:

∂H

∂θ
=

∑
j

∂H

∂yj
·
∂yj
∂θ

1. The first term, ∂H
∂yj

, is the hypervolume contribution of each point.

2. The second term,
∂yj
∂θ , is the Jacobian matrix.
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From “exact” solutions to uniform solutions

Core idea: Maximize the minimal pairwise
distances in all objective vectors.

max
S⊂PF

min
y(i),y(j)∈S

ρ(y(i), y(j))

y = h̃(λ) = argmin
y′∈Y

{
yi − zi
λi

}

Implement:

Substituting yields the following
bi-level optimization problems:

dPack = max
ϑ(1),...,ϑ(K)

min
1≤i<j≤K

ρ(y(i), y(j))

y(k) = argmin
y(k)∈Y

{
y
(k)
i − zi
λi (ϑ(k))

}
, i ∈ [m].
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Properties of maximizing the minimal pairwise
distances

For a compact and connected PF,

• (Asymptotically.) As the number of points K → +∞, the empirical distribution of
the points solving the max-min problem converges to the uniform distribution.

• (No-Asymptotically)
• For a bi-objective problem,

• The generated distribution contains two endpoints on PF.
• The neighborhood distances are equal.
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Results on smooth Tchebycheff

Figure 4: Smooth Tchebycheff is also helpful to learn the entire PF.
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Multiobjective optimization with Stein Varational
Gradient Descent (MOO-SVGD)

The MOO-SVGD methods

For each solution θi , its update rule is:

1. (MOO-SVGD)
θi ← θi − ϵϕ̂(θi ), where ϕ̂(θi ) =

1
n

∑n
j=1[ g

∗(θj)k(θi ,θj)︸ ︷︷ ︸
Push solutions to PF.

−α ∇θjk(θi ,θj)︸ ︷︷ ︸
Push solutions away

].

2. (MOO-LD) θ ← θ − ϵg∗(θ)︸ ︷︷ ︸
Push solutions to PF

+
√
2αϵξ︸ ︷︷ ︸

Noise term, for diversity

,

Two terms,

1. The first term, g∗(θ) ∝ argmaxg∈Rd

{
mini∈[m]⟨g , gi (θ)⟩, s.t.∥g∥ ≤ 1

}
.

2. The second term, a positive definite kernel k(θ,θ′).

Cons: performance is heavily depended on the bandwidth.
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Results on VLMOP2
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(b) GradHV

Figure 5: Results of gradient manipulation methods. Disadvantage of MOO-SVGD: solution quality is
affected heavily wrt the bandwidth in kernel function.
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Few for Many – Using ‘max’ [24]

Setting: when number of objectives is far more than number of solutions.
Core idea: at least one solution in the candidate set can optimize all objectives.

Minimize the max of minimas (CityUHK)

min
XK={x(k)}Kk=1⊂X

f(x) =

(
min
x∈XK

f1(x), min
x∈XK

f2(x), · · · , min
x∈XK

fm(x)

)
︸ ︷︷ ︸

m>>K

,

=⇒ min
XK⊆X

f(x) =

(
min

x(1)∈X
f1(x), min

x(2)∈X
f2(x), · · · , min

x(m)∈X
fm(x)

)
.

=⇒ min
XK⊆X

(
max
i∈[m]

min
x{i}∈X

fi (x)

)

[24] X. Lin, Y. Liu, X. Zhang, et al., “Few for many: Tchebycheff set scalarization for many-objective optimization,” in International Conference on
Learning Representations, 2025.
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Few for Many – Results

Figure 6: Few for many results.
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Few for Many – Sum of Minimal(SoM) [25]

Minimizing the sum of minimal, UCLA.

min
XK={x(k)}Kk=1⊂X

f(x) = min
x∈XK

f1(x), min
x∈XK

f2(x), · · · , min
x∈XK

fm(x),

=⇒ min
XK⊆X

f(x) =

(
min

x(1)∈X
f1(x), min

x(2)∈X
f2(x), · · · , min

x(m)∈X
fm(x)

)
.

=⇒ min
XK⊆X

m∑
i=1

min
x{i}∈X

fi (x)

[25] L. Ding, Z. Chen, X. Wang, et al., “Efficient algorithms for sum-of-minimum optimization,” in International Conference on Machine Learning, 2024.
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Overview

1. Introduction to MOO in Deep Learning

2. Finding a Single Pareto Optimal Solution
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7. Open Challenges and Future Directions
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Finding an Infinite Set of Solutions

Weiyu Chen

HKUST

August 29, 2025
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From Finite to Infinite Solutions

• Previous Goal: Find a finite set of diverse, Pareto-optimal solutions.
• This provides a discrete approximation of the Pareto front.
• Users can choose from a pre-computed set of trade-offs.

• New Goal: Learn the entire continuous Pareto set.
• Why? Many applications require a solution for any user preference, not just a few

predefined ones.
• We want to generate a user-tailored, optimal model on-demand.

The Core Challenge

It is computationally impossible to train and store an infinite number of neural networks.
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From Finite to Infinite Solutions

The Core Challenge

It is computationally impossible to train and store an infinite number of neural networks.

The Solution

Instead of learning the solutions directly, we learn a mapping function that takes a user
preference vector α and generates the corresponding model parameters θ(α).

α ∈ ∆m−1
Learned Neural Network−−−−−−−−−−−−−−→ θ(α)

Preference Space

𝛼!

𝛼"

𝑓!(𝜃)

𝑓"(𝜃)

Parameter Space Objective Space
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Overview of Network Structures
To learn the mapping α→ θ(α), specialized network architectures are required. We will
introduce three main categories:

1. Hypernetworks: A separate network that generates the weights of the target model.
2. Preference-Conditioned Networks: The target model itself is modified to take the

preference as a condition.
3. Model Combination: A composite model is formed by combining several base

models in a preference-aware manner.

Hypernetwork Target network

Data

(a) Methods based on the
hypernetwork.

Preference as extra input

Preference as condition 

Data

Data

(b) Methods based on
preference-conditioned network.

Ba
se

 n
et

w
or

ks

Target network

Data

(c) Methods based on model
combination.

Figure 7: Illustration of different structures to learn an infinite number of solutions.
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Hypernetworks

Definition (Hypernetwork)

A Hypernetwork is a neural network whose output is the set of weights for another neural
network (the ”target network”).
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Hypernetworks
• Input: User preference vector α; Output: The entire parameter set θ(α) for the
target model.
• Examples:

• PHN (Pareto Hypernetwork) [26], CPMTL [27]: Pioneering works using an
MLP-based hypernetwork.

• Recent Advances [28]: Using a Transformer architecture as the hypernetwork has
shown superior performance.

Hypernetwork Target network

Data

[26] A. Navon, A. Shamsian, E. Fetaya, et al., “Learning the Pareto front with hypernetworks,” in International Conference on Learning
Representations, 2021.

[27] X. Lin, Z. Yang, Q. Zhang, et al., “Controllable Pareto multi-task learning,” arXiv preprint arXiv:2010.06313, 2020.

[28] T. A. Tuan, N. V. Dung, and T. N. Thang, “A hyper-transformer model for controllable Pareto front learning with split feasibility constraints,”
arXiv preprint arXiv:2402.05955, 2024.

96 / 221



Hypernetworks: The Scalability Challenge

Major Challenge: Scalability

The hypernetwork’s output layer must match the size of the target network’s parameters,
which can be millions or billions. This makes the hypernetwork itself enormous.

Solution: Chunking

The parameter space of the target network is divided into smaller chunks. The
hypernetwork generates parameters for each chunk sequentially or in parallel.

Hypernetwork

Target network
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Preference-Conditioned Networks: Input
Conditioning [29]

Instead of a separate network, modify the target model to be directly aware of the
preference α. This is generally more parameter-efficient.

A. Input Conditioning

• Idea: Concatenate the preference vector α with the model’s input data x.

• Pros: Very simple to implement.

• Cons: Has limited capacity to create truly diverse solutions, as the conditioning
signal is only injected at the first layer.

Preference as extra input

Preference as condition 

Data

Data

[29] M. Ruchte and J. Grabocka, “Scalable Pareto front approximation for deep multi-objective learning,” in IEEE International Conference on Data
Mining, 2021.
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Preference-Conditioned Networks: Feature
Modulation [31] [32] [33]

B. Feature Modulation

• Idea: Use Feature-wise Linear Modulation (FiLM) layers [30] to condition
intermediate feature maps.

• An MLP takes α and generates channel-wise scaling (γ) and shifting (β) parameters.

u′c = γc(α)︸ ︷︷ ︸
scale

·uc + βc(α)︸ ︷︷ ︸
shift

[30] E. Perez, F. Strub, H. De Vries, et al., “FiLM: Visual reasoning with a general conditioning layer,” in Annual AAAI Conference on Artificial
Intelligence, 2018.

[31] A. Dosovitskiy and J. Djolonga, “You only train once: Loss-conditional training of deep networks,” in International Conference on Learning
Representations, 2020.

[32] W. Chen and J. Kwok, “Multi-objective deep learning with adaptive reference vectors,” in Conference on Neural Information Processing Systems,
2022.

[33] D. S. Raychaudhuri, Y. Suh, S. Schulter, et al., “Controllable dynamic multi-task architectures,” in IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022.
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Preference-Conditioned Networks: Feature
Modulation [31] [32] [33]

B. Feature Modulation
• An MLP takes α and generates channel-wise scaling (γ) and shifting (β) parameters.

u′c = γc(α)︸ ︷︷ ︸
scale

·uc + βc(α)︸ ︷︷ ︸
shift

Preference as extra input

Preference as condition 

Data

Data

[31] A. Dosovitskiy and J. Djolonga, “You only train once: Loss-conditional training of deep networks,” in International Conference on Learning
Representations, 2020.

[32] W. Chen and J. Kwok, “Multi-objective deep learning with adaptive reference vectors,” in Conference on Neural Information Processing Systems,
2022.

[33] D. S. Raychaudhuri, Y. Suh, S. Schulter, et al., “Controllable dynamic multi-task architectures,” in IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022.
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Model Combination [34]

This approach constructs the final model by combining multiple pre-trained or
jointly-trained base models. It strikes a balance between flexibility and parameter
efficiency.

Linear Parameter Combination (PaMaL)

• Learn m base models (θ1, ...,θm), one for each objective’s extreme point.

• The final model is a simple weighted average of their parameters based on the
preference α.

θ(α) =
m∑
i=1

αiθi

• Drawback: Inefficient if the number of objectives m is large, as it requires training
and storing m full models.

[34] N. Dimitriadis, P. Frossard, and F. Fleuret, “Pareto manifold learning: Tackling multiple tasks via ensembles of single-task models,” in
International Conference on Machine Learning, 2023.
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Redundancy in Model Combination [35]

Observation from PaMaL

When training multiple base networks (θ1, . . . ,θm), their parameters become highly
similar. This redundancy suggests that storing m full networks is inefficient.
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[35] W. Chen and J. Kwok, “Efficient Pareto manifold learning with low-rank structure,” in International Conference on Machine Learning, 2024.
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LORPMAN: Low-Rank Pareto Manifold
Learning [35]

The Core Idea

Instead of m full networks, learn one shared main network (θ0) and m task-specific
low-rank update matrices.

+ ...

O
rthogonal

Regularization...
...

...

...

...

Weight low-rank matrices

Weight
losses

[35] W. Chen and J. Kwok, “Efficient Pareto manifold learning with low-rank structure,” in International Conference on Machine Learning, 2024.
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LORPMAN: Low-Rank Pareto Manifold
Learning [35]

The Core Idea

Instead of m full networks, learn one shared main network (θ0) and m task-specific
low-rank update matrices.

The final model parameters are generated by:

θ(α) = θ0︸︷︷︸
Shared Features

+s
m∑
i=1

αi BiAi︸ ︷︷ ︸
Task-Specific Low-Rank Update

• θ0: A full-rank main network that captures common features across all tasks.
• Bi ∈ Rd×r ,Ai ∈ Rr×k : Low-rank matrices for task i (where rank r ≪ d , k). They

capture task-specific knowledge.
• s: Scaling factor.

[35] W. Chen and J. Kwok, “Efficient Pareto manifold learning with low-rank structure,” in International Conference on Machine Learning, 2024.
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Model Combination: Mixture of Experts [36]

• Idea: Instead of training from scratch, merge several existing expert models.

• A gating network, conditioned on the preference α, decides how to weight the
“differences” (task vectors) between the individual expert models and a unified base
model.

[36] A. Tang, L. Shen, Y. Luo, et al., “Towards efficient Pareto set approximation via mixture of experts based model fusion,” arXiv preprint
arXiv:2406.09770, 2024.
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Training Strategy
Regardless of the structure (Hypernetwork, etc.), we need to train its underlying
parameters, which we denote by ϕ.

General Training Objective

The goal is to minimize the expected loss over all possible preferences and all training
data.

min
ϕ

Eα∼∆m−1 E(x ,y)∼D [g̃α(ℓ(t(x ;θ(α;ϕ)), y))] ,

• ϕ: The learnable parameters of the structure (e.g., hypernetwork weights).

• α: A preference vector, randomly sampled from a distribution over the simplex (e.g.,
Dirichlet) during training.

• θ(α;ϕ): The target model parameters generated for preference α.

• g̃α(·): An MOO algorithm that produces a single solution given preference vector α.

The choice of the loss function L is crucial. Let’s look at the common options. 107 / 221



Choosing the Training Loss

• Scalarization Methods (Most Common)
• Linear Scalarization: Combine objectives into a single weighted sum. Simple and

effective.

L(θ) =
m∑
i=1

αi fi (θ)

• Used by PHN, COSMOS, PaMaL, LORPMAN.
• Tchebycheff / Smooth Tchebycheff: Can handle non-convex Pareto fronts better

than linear scalarization.
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Choosing the Training Loss

• Preference-Aware MOO Methods
• Goal: Ensure the final solution is precisely aligned with the preference vector α.
• Example: Use the Exact Pareto Optimal (EPO) solver as the loss function. This

solver finds a gradient descent direction that explicitly pushes the solution’s objective
vector to be proportional to α.

• Hypervolume Maximization
• Goal: Ensure the learned Pareto set has good diversity and convergence.
• How it works (PHN-HVI [37]): In each step, sample a batch of preference vectors,

generate the corresponding solutions, and then compute a loss based on maximizing the
hypervolume of this set of solutions.

[37] L. P. Hoang, D. D. Le, T. A. Tuan, et al., “Improving Pareto front learning via multi-sample hypernetworks,” in Annual AAAI Conference on
Artificial Intelligence, 2023.
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Theoretical Foundations of Gradient-Based MOO
While practical algorithms have advanced rapidly, their theoretical underpinnings are
crucial for understanding their behavior and limitations. We will focus on two key areas:

1. Convergence Analysis

• Does the algorithm converge?

• If so, to what kind of point?

• At what rate does it converge?

2. Generalization Analysis

• How well does a model trained on a
finite dataset perform on unseen data?

• Important for real-world performance.
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The Goal of Convergence: Pareto Stationarity

In non-convex optimization (like deep learning), we typically aim for stationary points. In
MOO, the equivalent concept is Pareto stationarity.

Definition (Pareto Stationary Point)

A solution θ∗ is called Pareto stationary if the convex hull of its objective gradients
contains the zero vector. That is, there exists a weight vector λ ∈ ∆m−1 such that:

m∑
i=1

λi∇fi (θ∗) = 0

• This is a necessary condition for Pareto optimality.

• If all objectives are convex, it is also a sufficient condition.

• Gradient-balancing methods (like MGDA) are designed to find a common descent
direction d. If no such non-zero direction exists, we are at a Pareto stationary point.
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Convergence in the Deterministic Setting

Setting: Deterministic (Full-Batch) Gradient

We have access to the true gradient of each objective function at every iteration. This is
unrealistic in deep learning but provides a theoretical baseline.

• Key Result for MGDA [38]:
• Under mild conditions, MGDA is guaranteed to converge to a Pareto stationary point.
• The convergence rate is O(K−1/2), where K is the number of iterations.
• This rate is identical to that of gradient descent in single-objective optimization.

• Proof Intuition:
• The common descent direction d found by MGDA is constructed to be a descent

direction for all objectives simultaneously (or remain stationary if at an optimum).
• This ensures a guaranteed reduction in a potential function, similar to the

single-objective case.

[38] J.-A. Désidéri, “Multiple-gradient descent algorithm (MGDA) for multiobjective optimization,” Comptes Rendus Mathematique, vol. 350, no. 5-6,
pp. 313–318, 2012.
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Convergence in the Deterministic Setting

Setting: Deterministic (Full-Batch) Gradient

We have access to the true gradient of each objective function at every iteration. This is
unrealistic in deep learning but provides a theoretical baseline.

• Other Algorithms: Methods like CAGrad [15], PCGrad [16], and Nash-MTL [17]

also provide similar convergence guarantees in the deterministic setting.

[15] B. Liu, X. Liu, X. Jin, et al., “Conflict-averse gradient descent for multi-task learning,” in Conference on Neural Information Processing Systems,
2021.

[16] T. Yu, S. Kumar, A. Gupta, et al., “Gradient surgery for multi-task learning,” in Conference on Neural Information Processing Systems, 2020.

[17] A. Navon, A. Shamsian, I. Achituve, et al., “Multi-task learning as a bargaining game,” in International Conference on Machine Learning, 2022.
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The Challenge of Stochastic Gradients

Setting: Stochastic Gradient

In deep learning, we use mini-batches to estimate gradients. These estimates are noisy.

g̃i (θ) ≈ ∇fi (θ)

The Core Problem

The common descent direction d =
∑

λi g̃i is now computed with noisy gradients. Even if
the g̃i are unbiased estimates of the true gradients, the optimal weights λ∗ found by
solving the MGDA subproblem are biased.
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An Early Attempt: Increasing the Batch Size [39]

• The Strategy: Use an increasing batch size that grows with the number of
iterations.

• Why it Works: As the batch size grows, the variance of the stochastic gradients
decreases, making them more accurate. Eventually, the noise becomes small enough
to ensure convergence.

• The Problem: This is computationally very expensive and often impractical for
training large models.

The Goal

Achieve convergence with a constant batch size.

[39] S. Liu and L. N. Vicente, “The stochastic multi-gradient algorithm for multi-objective optimization and its application to supervised machine
learning,” Annals of Operations Research, pp. 1–30, 2021.
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Variance Reduction via Smoothing

Method: CR-MOGM [40]

Reduce the high variance of the weight vector λ by smoothing it over time.

• Core Idea: Use an exponential moving average (EMA) to stabilize the weights λ.
The update at iteration k is:

λ(k) = (1− γ)λ̂(k) + γλ(k−1)

where λ̂(k) are the noisy weights computed from the current stochastic gradients and
γ is a smoothing factor.
• Effect: This smoothing process stabilizes the final update direction, preventing large
fluctuations caused by gradient noise.
• Limitation: The convergence proof requires a bounded function value assumption,
which may not hold for all problems.

[40] S. Zhou, W. Zhang, J. Jiang, et al., “On the convergence of stochastic multi-objective gradient manipulation and beyond,” in Conference on
Neural Information Processing Systems, 2022.
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Gradient Tracking

Method: MoCo [41]

Address gradient bias by using a tracking variable.

• Core Idea: A tracking variable ĝ
(k)
i approximates the true gradient for each

objective i . It is updated as:

ĝ
(k+1)
i =

∏
Li

(
ĝ
(k)
i − γ(ĝ

(k)
i − g

(k)
i )

)
where g

(k)
i is the current stochastic gradient, γ is a step size, and

∏
Li

is a projection
to ensure the tracked gradient remains bounded.
• Limitations:

• Also relies on the bounded function value assumption.
• The analysis requires the number of iterations K to be very large, making it less

practical for problems with many objectives (m).
[41] H. Fernando, H. Shen, M. Liu, et al., “Mitigating gradient bias in multi-objective learning: A provably convergent approach,” in International

Conference on Learning Representations, 2023.
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Bias Correction via Double Sampling

Method: MoDo [42]

Directly address the bias in the weight calculation.

• Core Idea: Use a double sampling technique to get an unbiased estimate of the
gradient inner product matrix G⊤G , which is key to finding the weights.

• Mechanism:
• At each iteration, draw two independent mini-batches, z (k)

1 and z (k)
2 .

• Use gradients from these separate batches to construct an unbiased estimate:

λ(k+1) =
∏
∆m−1

(
λ(k) − ηG (k)(z (k)

1 )⊤G (k)(z (k)
2 )λ(k)

)
• Key Benefit: Achieves a convergence guarantee without requiring the bounded

function value assumption. It also guarantees a bounded conflict-avoidant distance.
[42] L. Chen, H. Fernando, Y. Ying, et al., “Three-way trade-off in multi-objective learning: Optimization, generalization and conflict-avoidance,” in

Conference on Neural Information Processing Systems, 2023.
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Regularizing the Update Direction

Method: SDMGrad [43]

Introduce a direction-oriented regularizer to guide the common descent direction.

• Core Idea: Regularize the common descent direction to keep it within a
neighborhood of a preferred target direction (e.g., the average gradient g0).

• Mechanism: The weight update incorporates the target direction g0. Like MoDo, it
uses double sampling for an unbiased update:

λ(k+1) =
∏
∆m−1

(
λ(k) − η

[
G (k)(z (k)

1 )⊤
(
G (k)(z (k)

2 )λ(k) + γg0(z
(k)
2 )

)])
where γ is a regularization factor.

• Key Benefit: Also achieves convergence without the bounded function value
assumption.

[43] P. Xiao, H. Ban, and K. Ji, “Direction-oriented multi-objective learning: Simple and provable stochastic algorithms,” in Conference on Neural
Information Processing Systems, 2023.
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Summary of Stochastic Convergence Results

Table 1: Sample complexity to find an ϵ-accurate Pareto stationary point.

Method Batch Size Key Assumptions Complexity Notes

SMG Increasing (O(ϵ−2)) LS, BG O(ϵ−4) Impractical batch size

CR-MOGM Constant (O(1)) LS, BG, BF O(ϵ−2) Assumes bounded function
MoCo Constant (O(1)) LS, BG, BF O(ϵ−2) Assumes bounded function

MoDo Constant (O(1)) LS, BG O(ϵ−2) Removes BF assumption
SDMGrad Constant (O(1)) LS, BG O(ϵ−2) Regularized direction
SGSMGrad Constant (O(1)) GS O(ϵ−2) Weaker smoothness assumption

LS: L-smooth, GS: Generalized L-smooth, BG: Bounded Gradient, BF: Bounded Function value.
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Generalization Theory in MOO

Generalization in MOO is less explored than convergence but is gaining traction.
• Algorithm-Independent Bounds:

• Used tools like Rademacher complexity to bound the generalization error for
scalarization methods [44][45].

• Sample Complexity (Offline Learning):
• Asks: How many samples are needed to guarantee a good solution?
• This has recently been a very active area, leading to near-optimal bounds.

• Online Learning and Regret:
• Considers a sequential setting where data arrives over time.
• The goal is to minimize regret against the best fixed solution in hindsight.

[44] C. Cortes, M. Mohri, J. Gonzalvo, et al., “Agnostic learning with multiple objectives,” in Conference on Neural Information Processing Systems,
2020.

[45] P. Súkeńık and C. Lampert, “Generalization in multi-objective machine learning,” Neural Computing and Applications, pp. 1–15, 2024.
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Generalization: The Offline Problem Setup

Question: What is the sample complexity of MOO?

Given a fixed error tolerance ϵ and a hypothesis class H, how many data samples do we
need to draw from m distributions {Di}mi=1 to find a good hypothesis h?

The Goal: Find a hypothesis h such that its worst-case loss is close to the best possible
worst-case loss.

max
i∈[m]

ℓDi
(h) ≤ min

h∗∈H
max
i∈[m]

ℓDi
(h∗) + ϵ

• This problem formulation, related to Tchebycheff scalarization, was highlighted as an
open problem in 2023 [46] and has since seen rapid progress.

[46] P. Awasthi, N. Haghtalab, and E. Zhao, “Open problem: The sample complexity of multi-distribution learning for vc classes,” in Annual
Conference on Learning Theory, 2023.
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Generalization: Offline Sample Complexity Bounds

Lower Bound [47]

Any algorithm requires at least this many samples:

Ω̃

(
VCdim(H) +m

ϵ2

)
This bound tells us the fundamental difficulty of the problem, depending on model
complexity (VCdim(H)) and the number of objectives (m).

[47] N. Haghtalab, M. Jordan, and E. Zhao, “On-demand sampling: Learning optimally from multiple distributions,” in Conference on Neural
Information Processing Systems, 2022.
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Generalization: Offline Sample Complexity Bounds

Near-Optimal Upper Bound [48] [49]

Concurrent works developed algorithms (based on boosting or hedging) that achieve an
(almost) matching upper bound:

Õ

(
VCdim(H) +m

ϵ2

)
This result essentially resolves the sample complexity question for this problem setting.

[48] B. Peng, “The sample complexity of multi-distribution learning,” in Annual Conference on Learning Theory, 2024.

[49] Z. Zhang, W. Zhan, Y. Chen, et al., “Optimal multi-distribution learning,” in Annual Conference on Learning Theory, 2024.
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Generalization: The Online Learning Setup

Question: What is the regret of learning sequentially?

In an online setting, data arrives over K iterations. An algorithm A produces a sequence
of hypotheses h1, h2, . . . , hK .

The Goal: Minimize the cumulative regret, which is the difference between the
algorithm’s average performance and the performance of the best single hypothesis in
hindsight.

RegretK (A) :=
1

K

K∑
k=1

max
i∈[m]

ℓ
(k)
Di

(hk)− min
h∗∈H

1

K

K∑
k=1

max
i∈[m]

ℓ
(k)
Di

(h∗)
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Generalization: Online Regret and Open Questions

Upper Bound on Regret [50]

An adaptive online mirror descent algorithm was shown to achieve a regret of:

O

(
m · VCdim(H)√

K

)
This shows that as the number of iterations K grows, the average regret approaches zero.

[50] M. Liu, X. Zhang, C. Xie, et al., “Online mirror descent for tchebycheff scalarization in multi-objective optimization,” arXiv preprint
arXiv:2410.21764, 2024.
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Generalization: Online Regret and Open Questions

Open Question

• Online-to-Batch Conversion: Using this online algorithm to solve the offline
problem gives a suboptimal sample complexity. Can an online learner, perhaps with a
better conversion scheme, match the optimal offline sample complexity? This
remains an interesting open problem [49].

[49] Z. Zhang, W. Zhan, Y. Chen, et al., “Optimal multi-distribution learning,” in Annual Conference on Learning Theory, 2024.
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Application: Computer Vision

Most Representative Application: Multi-Task Dense Prediction

Training a single model to simultaneously perform multiple pixel-level prediction tasks on
an image. This is crucial for applications like autonomous driving and robotics.
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Application: Computer Vision

• Architecture: To be efficient, multi-task models use a large shared encoder (e.g., a
ResNet backbone) to extract features, followed by small, task-specific decoder heads.

Input Image → Shared Encoder → Features →


Decoder A → Task A Output

Decoder B → Task B Output

Decoder C → Task C Output

• The Conflict: During backpropagation, the gradients from different task losses flow
back into the shared encoder.
• If Task A and Task B require conflicting feature updates in the shared layers, they can

interfere with each other.
• This can lead to one task dominating training, while others suffer.

• The MOO Formulation:
• Each task’s loss is treated as a separate objective function.
• The goal is to find a Pareto-optimal set of shared parameters that balances performance

across all tasks.
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Application: Preference-Aware Model Merging

The Problem

We have many powerful models fine-tuned for specific tasks (e.g., on HuggingFace). It’s
desirable to merge them into a single model to save memory and deployment costs.

The Limitation of Existing Methods

Current merging techniques (e.g., weight averaging, task arithmetic) produce a single,
“one-size-fits-all” model. This model represents a fixed trade-off and cannot adapt to
different user needs.
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Formulating Merging as an MOO Problem [51]

Accuracy on Model A's Dataset
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Model A

Pareto Merging 
for user 1

Merged model by
exsiting methods

...

Pareto Merging 
for user 2

Pareto Merging 
for user n

The Goal

Find a Pareto set of merged models, where each point represents a different optimal
trade-off between the original models’ capabilities.

[51] W. Chen and J. Kwok, “Pareto merging: Multi-objective optimization for preference-aware model merging,” in International Conference on
Machine Learning, 2025.
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Formulating Merging as an MOO Problem
For different merging scenarios, the objectives vary:
• Data-Free Merging:

• Minimize the distance of the merged model θmerged to each of the original fine-tuned
models θk in parameter space.

Objective k : ∥θmerged − θk∥2F
• Data-Based Merging:

• Minimize the prediction entropy of the merged model on each task’s unlabeled data
distribution. A lower entropy often correlates with higher confidence and accuracy.

Objective k : Entropy(f (θmerged ; datak))

Challenge

Naively solving the MOO problem for every possible user preference is computationally
infeasible and requires storing all original models.
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Pareto Merging: A Parameter-Efficient Solution

The Pareto Merging Structure

Learn a single, preference-aware model composed of two parts:

1. Preference-Independent Base: A single, high-quality merged model.

2. Preference-Dependent Personalization: A small, low-rank tensor that modifies
the base model according to the user preference vector α.

θ(α) = θbase + G ×1 A×2 B×3 α︸ ︷︷ ︸
Low-rank tensor modification

This structure efficiently generates a custom model for any preference α.
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Pareto Merging: A Parameter-Efficient Solution

+ ...
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low-rank tensor

A single model
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MAP: Low-compute model merging with amortized
pareto fronts [52]

[52] L. Li, T. Zhang, Z. Bu, et al., “Map: Low-compute model merging with amortized pareto fronts via quadratic approximation,” arXiv preprint
arXiv:2406.07529, 2024.
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Application: Reinforcement Learning

Standard Reinforcement Learning (RL)

• An agent learns a policy π to maximize
a scalar cumulative reward in an
environment.

Multi-Objective RL (MORL)

• The agent receives a vector-valued
reward at each step: r(s, a) ∈ Rm.

The MORL Objective

Learn a policy network πθ(s) that finds a Pareto-optimal trade-off for the vector of
expected discounted rewards:

min
θ

f(θ) :=

[
−Eπθ

[∑
t

βtr1,t

]
, . . . ,−Eπθ

[∑
t

βtrm,t

]]
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Application: Reinforcement Learning

Meta-World: 10 Objectives [53]

[53] T. Yu, D. Quillen, Z. He, et al., “Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning,” in Conference on
Robot Learning, 2020.
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Application: Reinforcement Learning

Meta-World: 50 Objectives [53]

[53] T. Yu, D. Quillen, Z. He, et al., “Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning,” in Conference on
Robot Learning, 2020.

148 / 221



Approaches in MORL

1. Scalarization-Based Methods: The most common approach is to use linear
scalarization to convert the reward vector into a scalar reward, then solve with
standard RL algorithms.

2. Gradient-Balancing Methods: Apply methods like MGDA directly to the policy
gradients derived from each reward objective. This directly manages conflicting
policy updates.

3. Learning the Entire Pareto Set: Learn a single, preference-conditioned policy
πθ(s,α) that can act optimally for any desired trade-off α. This connects directly
back to the infinite-set learning methods.
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Multi-Objective Alignment in LLM

Can you give me information on

how to hack a bank account?

Hacking a bank account requires ...

No, I cannot give you information ...

helpfulness:

harmlessness:
Base LLM

harmlessness: 0.7
helpfulness: 0.3

• LLM alignment is crucial to ensure that their outputs reflect human values;

• but human values are multi-dimensional and may conflict;

• for example, not just generating helpful responses, but also ensuring they are
harmless.
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Rewarded Soups (RS) [54] and MOD [55]

harmlessness: 0.7
helpfulness: 0.3

Can you give me information on

how to hack a bank account?

Hacking a bank account requires ...

No, I cannot give you information ...

helpfulness:

harmlessness:

Base LLM Base LLM

Base LLMBase LLM

Base LLMBase LLM Mixed LLM
Rewarded Soups (Inference)

MOD (Inference)

Rewarded Soups and MOD (Training)

• fine-tune m LLMs for m preference dimensions separately;

• parameter- (RS) or logit- (MOD) space combination at inference.
[54] A. Rame, G. Couairon, C. Dancette, et al., “Rewarded soups: Towards Pareto-optimal alignment by interpolating weights fine-tuned on diverse

rewards,” in Conference on Neural Information Processing Systems, 2023.

[55] R. Shi, Y. Chen, Y. Hu, et al., “Decoding-time language model alignment with multiple objectives,” in Conference on Neural Information
Processing Systems, 2024.
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Panacea [3]

Some Notations:

• m: the dimension of preference;

• preference dataset Di = {(x, y1, y2, zi )} for the i-th dimensional preference;

• User preference vector α = (α1, . . . , αm) ∈ ∆m−1.

Formulate Multi-objective Alignment as an MOO Problem:

min
θ

[f (πθ,D1), . . . , f (πθ,Dm)]
⊤,

where f (πθ,Di ) is the loss function of fine-tuning LLM πθ on i-th preference using any
post-training methods (e.g., SFT, PPO, and DPO).

[3] Y. Zhong, C. Ma, X. Zhang, et al., “Panacea: Pareto alignment via preference adaptation for LLMs,” in Conference on Neural Information
Processing Systems, 2024.
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Panacea [3]

Each α corresponds to a Pareto-optimal θ, thus learning θ(α) to approximate the whole
Pareto set. But how to achieve θ(α)?

SVD-LoRA:
θ(α) = θ0 + UΣV ,

• θ0 ∈ Rp×q is the pre-trained weight;

• Σ is a diagonal matrix defined as diag(σ1, . . . , σr , sα1, . . . , sαm), {σi}ri=1 and s are
learnable scalars;

• U ∈ Rp×(r+m) and V ∈ R(r+m)×q are learnable matrices;

• r is the rank.

[3] Y. Zhong, C. Ma, X. Zhang, et al., “Panacea: Pareto alignment via preference adaptation for LLMs,” in Conference on Neural Information
Processing Systems, 2024.
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Panacea [3]

How to train θ(α)?

min
Θ

Eα∼∆m−1

[
m∑
i=1

αi f (πθ(α),Di )

]
,

where Θ denotes the learnable parameters in SVD-LoRA.

[3] Y. Zhong, C. Ma, X. Zhang, et al., “Panacea: Pareto alignment via preference adaptation for LLMs,” in Conference on Neural Information
Processing Systems, 2024.

156 / 221



Outline

6.1 Applications in Computer Vision
6.2 Applications in Model Merging
6.3 Applications in Reinforcement Learning
6.4 Applications in LLM Alignment
6.4.1 Multi-Objective Alignment
6.4.2 Multi-Objective Test-Time Alignment

6.5 Applications in AI4Science
6.6 Open-Source Libraries

157 / 221



Limitations of Multi-Objective Alignment

Key Challenge

Computationally expensive: require fine-tuning at least one base LLM (e.g., fine-tuning
a 65B LLM requiring 8*A100-80G GPUs).

Open Problem

Can we achieve multi-objective alignment while keeping the base LLM frozen?
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GenARM [57]

Core Idea

Use a reward model to guide the frozen base LLM’s generation, inspired by the
closed-form solution of RLHF [56]:

logπ(y|x)︸ ︷︷ ︸
output of the aligned LLM

= − logZ (x)︸ ︷︷ ︸
partition function

+ logπbase(y|x)︸ ︷︷ ︸
output of the base LLM

+
1

β
r(x, y)︸ ︷︷ ︸

reward score

.

Key Challenge

Need the token-level rewards for effective and efficient guidance.

[56] R. Rafailov, A. Sharma, E. Mitchell, et al., “Direct preference optimization: Your language model is secretly a reward model,” in Conference on
Neural Information Processing Systems, 2023.

[57] Y. Xu, U. M. Sehwag, A. Koppel, et al., “GenARM: Reward guided generation with autoregressive reward model for test-time alignment,” in
International Conference on Learning Representations, 2025.
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GenARM: ARM and Its Training

Autoregressive Reward Model (ARM): trained for outputting token-level reward.

• ARM design:

r(x, y) =
∑
t

logπθ(yt |x, y<t).

• Training objective:

f (πθ,D) := −E(x,y1,y2,z)∼D log σ
[
(−1)zβr

(
r(y1, x)− r(y2, x)

) ]
,

where z indicates preference (z = 1 means y1 is preferred over y2).
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GenARM: Training and Inference

harmlessness: 0.7
helpfulness: 0.3

Can you give me information on

how to hack a bank account?

Hacking a bank account requires ...

No, I cannot give you information ...

helpfulness:

harmlessness:

Base LLM

ARM ARM

• train m ARMs {πθi}mi=1 instead of fine-tuning the base LLM;

• given preference vector α, guided generation via multiple ARMs:

logπ(yt |x, y<t) = − logZ (x, y<t) + logπbase(yt |x, y<t) +
1

β

m∑
i=1

αi logπθi (yt |x, y<t).
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Limitations of GenARM

harmlessness: 0.7
helpfulness: 0.3

Can you give me information on

how to hack a bank account?

Hacking a bank account requires ...

No, I cannot give you information ...

helpfulness:

harmlessness:

Base LLM

ARM ARM

• m ARMs increase inference cost;

• ARMs are unaware of each other, leading to misalignment between guided generation
and preference vector.
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PARM [58]

Formulate the training of ARMs as an MOO problem:

min
θ

[f (πθ,D1), · · · , f (πθ,Dm)]
⊤ ,

where f (πθ,Di ) is the training objective of ARM on i-th preference dimension.

learn a single and unified ARM θ(α), called preference-aware ARM (PARM), to
approximate the entire Pareto set.

[58] B. Lin, W. Jiang, Y. Xu, et al., “PARM: Multi-objective test-time alignment via preference-aware autoregressive reward model,” in International
Conference on Machine Learning, 2025.
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Preference-aware Bilinear Low-Rank Adaptation
(PBLoRA)

How to achieve θ(α):

θ(α) = θ0 + sBW(α)A,

where B ∈ Rp×r and A ∈ Rr×q are learnable low-rank matrices. W(α) ∈ Rr×r is treated
as a weighted matrix that depends on α.

• W is a diagonal matrix in SVD-LoRA [3] while a full matrix in PBLoRA;

• More expressive: subspace of dimension r2 vs. r in standard LoRA;

• More effective and efficient conditioning: the number of parameters in W is
much smaller than B and A.

[3] Y. Zhong, C. Ma, X. Zhang, et al., “Panacea: Pareto alignment via preference adaptation for LLMs,” in Conference on Neural Information
Processing Systems, 2024.
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PBLoRA

Splitting into preference-agnostic and preference-aware terms:

BW(α)A =
[
B1 B2

] [W1 0
0 W2(α)

] [
A1

A2

]
= B1W1A1︸ ︷︷ ︸

preference-agnostic

+B2W2(α)A2︸ ︷︷ ︸
preference-aware

,

where W1 ∈ Rr1×r1 is learnable and W2(α) = Linear(α;ϕ) ∈ Rr2×r2 .

• Parameter-efficient: a PBLoRA ≈ a (r1 + r2)-rank LoRA.
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PARM: Training and Inference

• Training objective of PARM:

min
Θ

Eα∼∆m−1

[
m∑
i=1

αi f (πθ(α),Di )

]
,

where Θ denotes the parameters of PBLoRA.

• Given user preference vector α, guided generation via PARM:

logπ(yt |x, y<t) = − logZ (x, y<t) + logπbase(yt |x, y<t) +
1

β
logπθ(α)(yt |x, y<t).

• Compared PARM to GenARM:

1. a single ARM vs. m ARMs: faster inference;
2. a single PARM explicitly manages trade-offs between different preferences vs.

independently training different ARMs in GenARM.
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Weak-to-Strong Ability
• allow smaller reward model to guide larger base LLM;
• eliminate need for expensive training of large models;
• make multi-objective alignment accessible with limited resources.
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Figure 8: Learned Pareto fronts of different methods. 7B reward model guides 65B frozen LLM (left) and
1.1B reward model guides 7B frozen LLM (right).
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An molecule needs to balance multiple properties
including

Figure 9: Molecule examples.

• QED (drug-likeness).

• SA (synthetic accessibility).

• LogP (octanol-water partition
coefficient).

• DRD2 (dopamine receptor D2 affinity)

• LogS (log of solubility)

• JNK3 (c-Jun N-terminal Kinase 3),

• GSK3β (Glycogen Syntheses Kinase 3
Beta).

Those properties can be calculated by: https://github.com/sdv-dev/RDT.
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Ways to generate multiple-properties molecules

We introduce three methods,

1. Using large language models.
• Use LLM to conduct crossover and mutations.

2. Using diffusion models.
• Update the noise which generate molecular.

3. Using Gflownet.
• To learn how to add a new fragment.

170 / 221



Molecular Language-Enhanced Evolutionary
Optimization (MOLLEO) [59]

Figure 10: MOLLEO frameworks.

1. The summation of individual
objectives is used as a single
objective, and the nc fittest
members are retained; and

2. Only the Pareto frontier of the
current population is kept.

Repeat until the maximal budget is
used.

[59] H. Wang, M. Skreta, C. T. Ser, et al., “Efficient evolutionary search over chemical space with large language models,” in International Conference
on Learning Representations, 2025.
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MOLLEO – results

Figure 11: MOLLEO results.

172 / 221



MO-LLM – A LLM-based multiobjective
optimization platform [60]

Figure 12: MO-LLM framework.

[60] N. Ran, Y. Wang, and R. Allmendinger, “MOLLM: Multi-objective large language model for molecular design–optimizing with experts,” arXiv
preprint arXiv:2502.12845, 2025.
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MO-LLM – A LLM-based multiobjective
optimization platform [60]

Core difference between MOLLEO:
• Summarize experience into prompts.
• Using a hyper-rid way to maintain populations: diversity + convergence.

Figure 13: Saving current results into prompts.

[60] N. Ran, Y. Wang, and R. Allmendinger, “MOLLM: Multi-objective large language model for molecular design–optimizing with experts,” arXiv
preprint arXiv:2502.12845, 2025.
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MO-LLM – results

Figure 14: MO-LLM results.
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MO-LLM is also a general framework

Figure 15: An illustration of circle packing.
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MO-LLM is also a general framework

MOO-LLM reach world record on a serials of problems:

1. Structure design.

2. Math discovering.

3. Some new results released soon ..

Table 2: Comparison of results for the circle packing problem.

Circle packing n=26 Circle packing n=32
AlphaEvolve 2.635863 ≈ 2.937

FICO Xpress 2.635916 -

OpenEvolve 2.635977 -

MO-LLM (Ours) 2.635983 ≈ 2.939
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MOO Molecule Diffusion model: [61]

∇zt log pt(zt |y) = ∇zt log pt(zt)
valid molecules

+∇zt log pt(y |zt)
certain property

• DPS (Diffusion Posterior Sampling):

ẑ0 := Ez0∼p(z0|zt)[z0] =
1√
ᾱt

(zt + (1− ᾱt)∇zt log pt(zt)).

Figure 16: Caption

[61] X. Han, C. Shan, Y. Shen, et al., “Training-free multi-objective diffusion model for 3d molecule generation,” in International Conference on
Learning Representations, 2024.
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A two step diffusion model



zt ← zt +∇zt log pt(zt)︸ ︷︷ ︸
valid molecules

+∇zt log pt(y1|zt)︸ ︷︷ ︸
property 1 guidance

zt ← zt +∇zt log pt(zt)︸ ︷︷ ︸
valid molecules

+∇zt log pt(y2|zt)︸ ︷︷ ︸
property 2 guidance
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MOO diffusion results

Figure 17: MO diffusion results.

The improvement stems from data limitations; the dataset could support training a clean
classifier, but not a more demanding conditional diffusion model.
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HN-GFN [62] and MO-Gflownet [63]

Core idea: Distribution of P(x) is
proportional to reward R(x).

Step 1, sample a random preference λ from
the Dirichlet distribution.
Step 2, optimize the objective

L(τ, λ; θ) =
(
log

Zθ(λ)
∏

s→s′∈τ PF (s
′|s,λ;θ)

R(x |λ)
∏

s→s′∈τ PB(s|s′,λ;θ)

)2
.

1. PB(s|s ′, θ) is usually set as uniform
distribution.

2. Learnable parameters: Forward
distribution.

Learnable: forward distribution.
[62] Y. Zhu, J. Wu, C. Hu, et al., “Sample-efficient multi-objective molecular optimization with GFlowNets,” in Conference on Neural Information

Processing Systems, 2023.

[63] M. Jain, S. C. Raparthy, A. Hernández-Garcıa, et al., “Multi-objective GFlowNets,” in International Conference on Machine Learning, 2023. 181 / 221



From single objective Gflownet to MO-Gflownet

Algorithm 2 Hypernetwork Training Loop with Explicit Update

1: for i = 1 to N do
2: Sample a batch of random preference vectors λ ∼ p(λ).
3: Compute the scalarized reward R(x ;λ) = g(R(x), λ).
4: Update hypernetwork parameters ϕ using gradient descent on loss L:

ϕ← ϕ− η∇ϕL(θϕ(λ))
5: end for
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MO-Gflownet results
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Comments on MOO AI4S

Multiobjective optimization is important:

1. Real world design itself is multiobjective or even many-objective.

2. The advantage of MOO is for design. Using MOO, it is possible to generate more
diverse molecules.

Some further directions

1. Multi-fidelity, expensive optimization.

2. (Active learning) From simulation to real experiments, using simulation results to
guide the design of real-world experiments.
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LibMOON [64]

[64] X. Zhang, L. Zhao, Y. Yu, et al., “LibMOON: A gradient-based multiobjective optimization library in PyTorch,” in Conference on Neural
Information Processing Systems, 2024.
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LibMOON supported solvers and problems

1. Problems classes.

2. Solvers classes.

3. Core solvers classes.
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Any preference-based MOO is a base PSL solver
The gradient of PSL can be decomposed into three parts:

∂ℓpsl
∂ϕ︸ ︷︷ ︸
1×D

= Eλ∼Dir(p)
∂g̃λ
∂f︸︷︷︸

α̃:(1×m)

· ∂f
∂θ︸︷︷︸

B:(m×n)

· ∂θ

∂ϕ︸︷︷︸
C :(n×D)

· (9)

1.
∂g̃λ
∂f︸︷︷︸

α̃:(1×m)

·: which core solver is used.

2.
∂f
∂θ︸︷︷︸

B:(m×n)

: How to calculate the Jacobian matrix, 0-order optimization or bp.

3.
∂θ

∂ϕ︸︷︷︸
C :(n×D)

·: the PSL model, hypernetwork or LoRA.
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LibMOON examples (PSL – synthetic problem)

Generate an infinite set of solutions.

problem = get_problem(problem_name=args.problem_name , n_var=args.n_var)

solver = BasePSLSolver(problem , batch_size=args.batch_size , device=args.device , lr=args.lr , epoch=args.epoch ,

solver_name=args.solver_name , use_es=False)

model , loss_history = solver.solve()

Generate a finite set of solutions

problem = get_problem(problem_name=args.problem_name , n_var=args.n_var)

prefs = get_prefs(n_prob=args.n_prob , n_obj = problem.n_obj , mode=’uniform ’, clip_eps =1e-2)

core_solver = EPOCore(n_var=problem.n_var , prefs=prefs)

solver = GradBaseSolver(step_size=args.step_size , epoch=args.epoch , tol=args.tol , core_solver=core_solver)

res = solver.solve(problem=problem ,x=synthetic_init(problem , prefs), prefs=prefs)
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LibMOON examples

(MOO - MTL)

model = model_from_dataset(args.problem_name)

num_param = numel(model)

core_solver = EPOCore(n_var=num_param , prefs=prefs)

solver = GradBaseMTLSolver(problem_name=args.problem_name , step_size=args.step_size , epoch=args.epoch , core_solver=core_solver ,

batch_size=args.batch_size , prefs=prefs)

res = solver.solve ()

(PSL - MTL)

core_solver = EPOCore(n_var=problem.n_var , prefs=prefs)

solver = GradBasePSLMTLSolver(problem_name=args.problem_name , batch_size=args.batch_size ,

step_size=args.step_size , epoch=args.epoch , device=device , core_solver=core_solver)

train_res = solver.solve()
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LibMTL [65]

A PyTorch Library for Multi-Task Learning (2.4K stars, JMLR)

[65] B. Lin and Y. Zhang, “LibMTL: A Python library for deep multi-task learning,” Journal of Machine Learning Research, vol. 24, no. 209, pp. 1–7,
2023.
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Supported Methods and Datasets in LibMTL
support 26 optimization strategies, 8 architectures, and 6 datasets
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Modular Design in LibMTL

easy-to-use and well-extensible:
• customize your own MTL problem and use existing MTL methods implemented in
LibMTL;
• develop your own MTL methods (e.g., architecture and weighting) and make a fair
comparison with existing methods on the widely-used benchmark datasets.
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Modular Design in LibMTL

easy-to-use and well-extensible:
• customize your own MTL problem and use existing MTL methods implemented in
LibMTL;
• develop your own MTL methods (e.g., architecture and weighting) and make a fair
comparison with existing methods on the widely-used benchmark datasets.
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Take HPS as An Example

• single-input problem (left), e.g.,
molecular property prediction;

• multi-input problem (right), e.g., image
classification.

• LibMTL.architecture: hard
parameter sharing (HPS);

• LibMTL.model: ResNet/Transformers
for encoder, a linear layer for decoder;

• LibMTL.weighting: the optimization
strategy (e.g., EW and MGDA) for
handling multiple losses;
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Welcome to use and contribute!
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Overview

1. Introduction to MOO in Deep Learning

2. Finding a Single Pareto Optimal Solution

3. Finding a Finite Set of Solutions

4. Finding an Infinite Set of Solutions

5. Theoretical Foundations

6. Applications in Deep Learning

7. Open Challenges and Future Directions
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Tutorial Part 7:
Open Challenges and Future Directions

Weiyu Chen

HKUST

August 29, 2025
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Challenge 1: Theoretical Understanding

Problem:

• The theoretical foundations of many practical multi-objective deep learning methods
are not fully understood.

• Research has mainly focused on convergence, with less attention on generalization
error, which is crucial for real-world performance.

Future Direction:

• Develop broader, algorithm-agnostic generalization analyses.

• Theoretically investigate how network design choices affect Pareto set approximation.
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Challenges 2 & 3: Efficiency and Scalability

Reducing Gradient Balancing Costs

• Problem: Gradient balancing methods, while effective, have significant
computational overhead.

• Future Direction: Integrate gradient balancing with simpler methods like linear
scalarization to reduce costs and enable large-scale use.

Dealing with a Large Number of Objectives

• Problem: The preference vector space grows exponentially with more objectives,
making random sampling ineffective for learning the Pareto set.
• Future Direction:

• Develop efficient sampling strategies for high-dimensional preference spaces.
• Explore methods to automatically reduce or merge objectives based on their properties.
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Challenge 4: Distributed Training

Problem:

• Most current MOO algorithms are designed for a single GPU or machine.

• Scaling to multi-GPU and distributed environments is critical as models and datasets
grow, but it introduces unique challenges not seen in single-objective optimization.

Future Directions:

• Efficient Communication: Design methods for efficient gradient distribution and
synchronization across multiple GPUs/nodes.

• Privacy-Preserving MOO: Develop techniques for collaborative training when data
for different objectives is on separate devices and cannot be shared.
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Challenge 5: Advancements in LLMs

Problem:

• Current MOO applications for LLMs are mostly concentrated on the Reinforcement
Learning from Human Feedback (RLHF) stage.

• User preferences are often simplified into a basic preference vector, which may not
capture the complexity of human needs.

Future Directions:

• Expand MOO Application: Apply MOO techniques to other stages of the LLM
lifecycle, to better align models from the start.

• Advanced Preference Modeling: Explore more sophisticated methods to represent
and incorporate complex and nuanced user preferences.
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Challenge 6: Application in More Scenarios

The Untapped Potential:

• Most deep learning problems are inherently multi-objective, as models are evaluated
on multiple criteria.

• These criteria often create natural trade-offs that are perfect candidates for MOO.

Future Direction:

• Actively leverage MOO methods to explicitly navigate these trade-offs in a wider
range of deep learning applications.

• Move from single-metric optimization to a more holistic, multi-objective approach to
model development.
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THANK YOU!

Weiyu Chen, Baijiong Lin, Xiaoyuan Zhang, Xi Lin, Han Zhao

∗We sincerely thank Yiheng Zhu (ZJU) and Yifei Shen (MSRA) for their valuable feedback on the
“Applications in AI4Science” section.
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