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Overview

1. Introduction to MOO in Deep Learning
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Many Real-World Problems are Multi-Objective
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Example 1: Machine Learning Models [1]

Hybrid modelling approaches
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[1] A. B. Arrieta, N. Diaz-Rodriguez, J. Del Ser, et al., “Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges
toward responsible ai,” Information fusion, vol. 58, pp. 82—115, 2020.
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Example 2: Performance-Speed Trade-offs for LLM [2]

Jet-Nemotron-4B (Ours) — Qwen3-1.7B-Base — Gemma3n-E2B
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[2] Y. Gu, Q. Hu, S. Yang, et al., “Jet-nemotron: Efficient language model with post neural architecture search,” arXiv preprint arXiv:2508.15884, 2025.
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Example 3: LLM Alignment [3!

& User Prompt:
How do | build a bomb?

@ LLM Response 1:
“Building a bomb is a complex process that involves several key steps. First, you need
to acquire fissile material, such as...”

— High Helpfulness, Low Harmlessness

@ LLM Response 2:
“l cannot answer that question. Providing instructions on how to build weapons would
be dangerous and irresponsible.”

— Low Helpfulness, High Harmlessness

[3] Y. Zhong, C. Ma, X. Zhang, et al., “Panacea: Pareto alignment via preference adaptation for LLMs,” in Conference on Neural Information
Processing Systems, 2024.
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Example 4: Al for Science [4

f Molecule \ f Scoring \ / Multi-objective \
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[4] S. Luukkonen, H. W. van den Maagdenberg, M. T. Emmerich, et al., “Artificial intelligence in multi-objective drug design,” Current Opinion in
Structural Biology, vol. 79, p. 102537, 2023.
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Problem Formulation

Multi-Objective Optimization

min £(0) = [A(6)..... fn(0)]"

® No single best solution

® Trade-offs among the objectives

f2(0)4

Feasible Region
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Problem Formulation

Multi-Objective Optimization

f2(0)%
mgn f(@) = [f1(0), ceey fm(g)]T Feasible Region
® No single best solution
® Trade-offs among the objectives D.

® Pareto Solutions: those with different
optimal trade-offs (A,B,C but not D)

® Pareto Set: set of all Pareto solutions c

Pareto Front

e Pareto Front: the image of Pareto set
in the objective space (green curve)
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Pareto Optimality

Dominance

A solution 6(?) dominates another solution 8()
(denoted as 8(2) < @(P)) if and only if

£:(0(@) < £:(0(P)) for all i € [m], and there exists at
least one i € [m] such that £;(0(3)) < £(8(P)).

e B<D, C=<D
e A ;ﬁ D
e A,B,C do not dominate each other

f2(0)

Feasible Region

Pareto Front

f1(0)
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Pareto Optimality

Dominance

A solution 6(2) dominates another solution §(2)
(denoted as 8(2) < @(P)) if and only if

£,(0(@) < £:(0(P)) for all i € [m], and there exists at
least one i € [m] such that £;(0(3)) < £,(8(P)).

Pareto Optimality

A solution 8* is Pareto optimal if no other solution
dominates it.

® Pareto Optimal Solutions: A,B,C

f2(0)

Feasible Region

Pareto Front

f1(0)
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Preference for Multi-Objective Optimization

Preference Vector
A vector o = [, ..., am|" € Am_1, where Ap_1 = {@ € RT: > 7 a; =1} is a
(m — 1)-simplex.

® Each «; represents the importance
assigned to the /-th objective

0,0, 1)
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Preference for Multi-Objective Optimization

Preference Vector

A vector o = [, ..., am|" € Am_1, where Ap_1 = {@ € RT: > 7 a; =1} is a

(m — 1)-simplex.

® Each «; represents the importance
. . o f2(0)t 40901
assigned to the i-th objective I

® Each preference has its
corresponding Pareto solution

(0.5,0.5) %
4
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What you can find in this tutorial

(a) Problem

______________
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What you can find in this tutorial
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What you can find in this tutorial
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What you can find in this tutorial

(a) Problem

______________

Deep Model 6 E
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(d) Application
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(b3) Infinite Solutions
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Qetum
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Overview

2. Finding a Single Pareto Optimal Solution
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Tutorial Part 2:
Finding a Single Pareto Optimal Solution

Baijiong Lin
HKUST(GZ)

August 29, 2025
|

:
1JCAA2025

Guangzhou August 29-31
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2.1 Overview
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Finding a Single Pareto Optimal Solution

Problem Setting
In many scenarios (e.g., multi-task learning), it's sufficient to find a single Pareto optimal
solution that balances all objectives well.
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Motivation: Why Not Equal Weighting?

The General Formulation:

minZ)\,-f,-(B),

6

where ); is the weight for the /-th objective.
Equal Weighting (EW): \; =
Problems:

e Different objectives may have different scales;

® Some objectives converge faster than others;

® May lead to unsatisfactory performance on some objectives.

Key Challenge
How to dynamically tune the objective weights {\;}; during training?

25 /221



Taxonomy of Single Solution Methods

Loss Balancing Methods

dynamically compute or learn {\;}™; from the loss perspective and then minimize

27;1 /\ifi(a)'

Gradient Balancing Methods
find a common update direction d to update the model parameter via 8 = 6 — nd:

® Gradient Weighting: learn {\;}7; from the gradient perspective and then
compute d = Y7, \ig; (where g; = Vgfi(0));

e Gradient Manipulation: correct each objective gradient g; to g; and then compute
d= 27;1 g

26 /221



Taxonomy of Single Solution Methods

Single Solution
Methods
Loss Balancing Gradient Balancing
Methods Methods

Gradient Gradient
Weighting Manipulation
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2.2 Loss Balancing Methods
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Loss Balancing Methods - Overview

Dynamically compute or learn objective weights {\;}7; during training using measures
on loss values.

Advantages: Disadvantages:
® | ow computational cost ® Heuristic nature
® FEasy to implement ® |imited theoretical guarantees

® One backpropagation per iteration

29 /221



Dynamic Weight Average (DWA) []

Motivation
Estimate objective weights based on the rate of change of training losses.

Algorithm:

O mexp(w; /)
i k— )
Sy exp(wi Y /)

(k=1) _ 7D

where w; = 5 is the loss ratio.

Key Insight:
® Tasks with higher loss ratios get lower weights

® Simple and effective heuristic

[5] S. Liu, E. Johns, and A. J. Davison, “End-to-end multi-task learning with attention,” in /[EEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019.
30/221



Uncertainty Weighting (UW) [®

Motivation
Learn task-dependent uncertainty (noise) to automatically balance losses.

Formulation:

min Z ) +logs; |,
0,s
_ T :
where s = [s1,...,5m]" are learnable uncertainty parameters.
Interpretation:
® logs;: regularization term

e Jointly optimize @ and s

[6] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncertainty to weigh losses for scene geometry and semantics,” in /EEE/CVF
Conference on Computer Vision and Pattern Recognition, 2018.
31/221



Impartial Multi-Task Learning (IMTL-L) 8]

Core Idea
Encourage all objectives to have similar loss scales through transformation.

Formulation:
min » (e%f;(0) —s;)
0,s 4
i=1
Key Insight:
® s; learned to balance scales
® Equivalent to log transformation (i.e., log f;(8)) when {s;}™, are optimal I']

[7] B. Lin, W. Jiang, F. Ye, et al., “Dual-balancing for multi-task learning,” arXiv preprint arXiv:2308.12029, 2023.

[8] L. Liu, Y. Li, Z. Kuang, et al., “Towards impartial multi-task learning,” in International Conference on Learning Representations, 2021.
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Multi-Objective Meta Learning (MOML) [°I

Motivation
Use validation performance to adaptively tune objective weights via bi-level optimization.

Bi-level Formulation:

-

min [A(0" (A DY), ..., fn(6°(N): D) (1)

st. 0%(A) = argmin i)\;fi(O;D,t-r). (2)
A

Algorithm:
1. Given weights A, train model on training data
2. Evaluate on validation data and update weights to minimize validation losses
3. Repeat

[9] F. Ye, B. Lin, Z. Yue, et al., “Multi-objective meta learning,” in Conference on Neural Information Processing Systems, 2021.
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Multi-Objective Meta Learning (MOML)

Challenges of MOML:
e Complex hypergradient V,6*(A) computation
® High computational cost

® Memory intensive

Efficient Extensions: Auto-) [19, FORUM [1]

[10] S. Liu, S. James, A. Davison, et al., “Auto-Lambda: Disentangling dynamic task relationships,” Transactions on Machine Learning Research, 2022.
[11] F. Ye, B. Lin, X. Cao, et al., “A first-order multi-gradient algorithm for multi-objective bi-level optimization,” in European Conference on Artificial
Intelligence, 2024.
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Random Weighting [12

Motivation
Surprisingly, random weighting can be an effective approach for multi-task learning.

Algorithm:

F.softmax(torch.randn(self.task_num), dim=-1)

Key Insights:
® Randomness in loss weighting is beneficial to MTL;
® Can achieve comparable performance with sophisticated methods;

® Serves as a strong baseline for MTL weighting.

[12] B. Lin, F. Ye, Y. Zhang, et al., “Reasonable effectiveness of random weighting: A litmus test for multi-task learning,” Transactions on Machine
Learning Research, 2022.
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Smooth Tchebycheff Scalarization (STCH) [13]

Replace non-smooth Tchebycheff function with a smooth approximation for better
convergence.

Original TchebychefF: Smooth Tchebycheff:
i OEE . i i(f(0) - 2
ménlrglé:;(]a( (0) —z) mm,ulogZexp{a( (6) z;)}.
0 i=1 H
Problems:
Advantages:

¢ Non-smooth max(-) operation

e Slow convergence: (’)(1/52) ® Smooth when all f; are smooth

_ : . °
® Hard to optimize with gradients Faster convergence

® Retains Pareto optimality

[13] X. Lin, X. Zhang, Z. Yang, et al., “Smooth tchebycheff scalarization for multi-objective optimization,” in International Conference on Machine
Learning, 2024.
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2.3 Gradient Balancing Methods
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Gradient Balancing Methods - Overview

find a common update direction d to update the model parameter via 8 = 8 — nd:

® Gradient Weighting: learn {\;}7, from the gradient perspective and then
compute d = Y 7, \;g; (where g; = Vgfi(0));

e Gradient Manipulation: correct each objective gradient g; to g; and then compute

d= 27;1 g
Advantages: Disadvantages:
® Better performance than loss balancing ® Requires m backpropagations per
® Theoretical convergence guarantees iteration!

e Can reach Pareto stationary points

38221
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2.3 Gradient Balancing Methods
2.3.1 Gradient Weighting Methods
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Multiple Gradient Descent Algorithm (MGDA) [14

Motivation
Find a direction d that maximizes the minimal decrease across all objectives.

max min (f;(8) — (8 — nd)) ~ max min g, d

d ig[m] d ie[m]

Reformulate as: d = G\, where

X = argmin ||GA|?,
AeAm—l

G=I[g1,...,8m] € RI*™M and A,,_1 is the simplex.

[14] O. Sener and V. Koltun, “Multi-task learning as multi-objective optimization,” in Conference on Neural Information Processing Systems, 2018.
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Conflict-Averse Gradient Descent (CAGrad) [15]

Motivation
Improve MGDA by constraining the update direction to stay close to the average gradient.

max min g/'d st. [|d - go|| < c||go]
i€[m]
where go = = 3", g; is the average gradient.

Equivalent Optimization Problem:

X =argmingigo + [lgolllgall

A€ m—1

E
where gx = L G and the update direction d = go + mgx-

[15] B. Liu, X. Liu, X. Jin, et al., “Conflict-averse gradient descent for multi-task learning,” in Conference on Neural Information Processing Systems,
2021.
41/221



IMTL-G 8]

Core Idea
Find update direction with equal projections on all objective gradients.

ule:u,-Td, 2<i<m,

where u; = | H are unit gradients. If constraining 7", A; = 1, problem has a
closed-form solutlon of A:

Ao..m =8l U(DUT) . M=1-30A
i=2

Where A(277m) = [)\2’ Ceey )\m]T, U = [U1 —u,...,u; — Um]' and
D=[g1—g,. ..,8 —8m]

[8] L. Liu, Y. Li, Z. Kuang, et al., “Towards impartial multi-task learning,” in International Conference on Learning Representations, 2021.

42221
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2.3 Gradient Balancing Methods

2.3.2 Gradient Manipulation Methods
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Projecting Conflicting Gradients (PCGrad) [1°

Motivation
Resolve gradient conflicts by projecting each gradient onto the normal plane of conflicting
gradients.

Conflict Detection: Gradients g; and g; are conflicting if g,-ng < 0.

Gradient Correction: For each gradient g;, if g,ng < 0 for some j # i

g =8 —

The Aggregated Gradient: d =) " §;.

[16] T. Yu, S. Kumar, A. Gupta, et al., “Gradient surgery for multi-task learning,” in Conference on Neural Information Processing Systems, 2020.
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2.3 Gradient Balancing Methods

2.3.3 Speedup Strategy
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The Computational Bottleneck

Key Challenge

Gradient balancing methods require m backpropagations per iteration and storing
gradient matrix G € RY*™.

Scalability Problem

Direct application to large models (e.g., Transformers) is prohibitively expensive!
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Some Speedup Strategies

1. Feature-Level Gradients 14l 2. Random Subset Sampling [15];
e Compute gradients w.r.t. shared e Sample m’ < m objectives per iteration;
features h;

® Reduces computation by factor m/m’;
® g, = V,f; instead of g; = Vgf;

S di : 17].
® Reduces gradient dimension due to 3. Periodic Weight Updates (7]

|h| < |6]; ® Update A every 7 iterations
® used in MGDA, IMTL-G, and ® Use fixed A* for intermediate steps
Aligned-MTL. ® Speedup: = T times

[14] O. Sener and V. Koltun, “Multi-task learning as multi-objective optimization,” in Conference on Neural Information Processing Systems, 2018.

[15] B. Liu, X. Liu, X. Jin, et al., “Conflict-averse gradient descent for multi-task learning,” in Conference on Neural Information Processing Systems,
2021.

[17] A. Navon, A. Shamsian, I. Achituve, et al., “Multi-task learning as a bargaining game,” in International Conference on Machine Learning, 2022.
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Some Speedup Strategies

4. FAMO (Gradient-Free) [18I:
e Update weights X using loss differences;
® Xis updated as A < A — nVx ||GA||? in MGDA, and note that

T
%V)\ HG>\H2 — GTGA — GTd ~ ?]; |:f1(k) o f]_(k+1), o f,7(7k) _ f,g,k+1)] ;

® only applicable to MGDA-based methods.

Bad News

Although these strategies significantly reduces computational and memory costs, they
may cause performance degradation.

[18] B. Liu, Y. Feng, P. Stone, et al., “FAMO: Fast adaptive multitask optimization,” in Conference on Neural Information Processing Systems, 2023.
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2.4 Summary
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Summary: Loss vs. Gradient Balancing

Loss Balancing Gradient Balancing
Computation Cost | Low (1 backprop) | High (m backprops)
Performance Good Better
Convergence Heuristic Theoretical guarantees
Memory Usage Low High (store gradients)
Scalability Good Limited

Key Insights
® | oss balancing methods are computationally efficient but lack theoretical
guarantees;

e Gradient balancing methods provide better performance and convergence
properties at higher computational cost.
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Overview

3. Finding a Finite Set of Solutions
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Tutorial Part 3:
Finding a Finite Set of Solutions

Xiaoyuan Zhang
CityUHK, ZGCA

August 29, 2025
|

:
1JCAA2025

Guangzhou August 29-31
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3.1 Preference-based methods
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General Optimization Algorithm

How to solve updating direction d?

Algorithm 1 Generic MOO Algorithm

1: Initialize parameters 6(®)
2. fort=1,..., T do
3: for k=1,2,... K do

4 Calculate the descent direction d,

5 Update parameters: (k) = g(k=1) _p, d.
6: end for

7: end for

54 /221



Multiple Gradient Descent Algorithm (MGDA)

Core Idea: Finding a direction to decrease all objectives,

Primal problem

. 1
min o + §||dH2
s.t. d'V£i(0) <«
—_——
To find a direction decrease all objectives.

However, the primal problem is difficult to solve since the dimension of d can be very
high(~ 10,000+) for neural networks.
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MGDA — Dual Form

Solving the Lagrangian yields the dual problem:

Dual problem

d=—) a;Vyfi(0)
i=1

where a; > 0 and > «; = 1 and solves the following problem,

I 2

D aiVefi(6)

i=1

Y ai=1,0;2>0,Vip. (3)

2 | i=1

The original problem is convex, solving the dual form is equivalent to solving the primal
problem. The number of decision variables of dual form is only m (number of objectives).
56 /221



Results of the Dual problem

1. Case 1, 0 is a Pareto stationary solution. MGDA can not find a valid updating
direction. Program is terminated.

2
=0.

m
> aiVefi(0)
i=1

2

2. Case 2, MGDA find a direction to decrease all objectives. Update the current
solution and continue

d=>) a;Vefi(h)
i=1

‘Q: Can MGDA find a diverse set of PO solutions?‘

57 /221



MGDA only converges to an arbitrary PO solution

o 10
o8 0s
0s 0s
04 04
02 02
o0 oo
0.0 02 04 0.6 0.8 Lo 0.0 0.2 0.4 0.6 08 1.0
(a) Random Linear Scalarization (b) MOO MTL

Because MGDA relies heavily on different initializations to achieve solution diversity, it

lacks a strong mechanism for constraining the final outcomes.

LT

06

04

02

0o

0.0

02 04 06 08

(c) Pareto MTL (Ours)

10
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Pareto Multi-Task Learning (PMTL) (19

Idea of PMTL: Solutions constrained in sector regions.

mgn f(0) = (f(0),1(0),...,fn(0))
s.t. f(O)EQk:{veRT\uijgqu, Vi=1,...,K}

L8

«—— Task 2 Loss

4— Task 1 Loss

[19] X. Lin, H.-L. Zhen, Z. Li, et al., “Pareto multi-task learning,” in Conference on Neural Information Processing Systems, 2019. 59 /221



Pareto Multi-Task Learning (PMTL)

Implementation of PMTL

1
d, o) = i [lv|?
(d, @) arg _min a+ 2HvH

R" a€R
Vi0:)'v<a, i=1,....m
VGi(0:)Tv<a, jel(6:)

The function G is used to detect a solution is close to the boundary of a sector.

Shortcomings:
1. The constraint on PO solutions is still weak.

2. For problems with more than two objectives, the number of constraint functions are
too high.
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Exact Pareto Optimization(EPQ) [20]: [21]

Core idea: The constraint of PMTL is loose, it is desired an exact control of PO solutions

Definition

An ‘exact’ solution 6

AL .

Updating direction

d=> o;Vfi(0)

[20], [21] D. Mahapatra and V. Rajan, “Multi-task learning with user preferences: Gradient descent with controlled ascent in Pareto optimization,” in
International Conference on Machine Learning, 2020, D. Mahapatra and V. Rajan, “Exact Pareto optimal search for multi-task learning and multi-criteria

decision-making,” arXiv preprint arXiv:2108.00597, 2021.
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EPO

«;'s solves the following optimization problem,

a=argmax a'C (a]l#; +1 (1 — ILM;))

acsSm

ach > achILJ, VjeJ—Jr,
s.t

a’c >0, VjeJ,

62221



Symbols and sets

Symbols

L ¢ = Gng, Vj e [m],. C= G'G. cis used to decease all objectives.

2. pr(f(0)): Uniformity function. . (f(6)) = KL (f(e) \ #) , @ level of uniformity
aj=r (Iog <1/im> — ,u,(f)). aj: level of uniformity for objective j.

1. Theset J={j|a’¢;>0} and J={j|a’c <0}

2. 0 ={j1 f = maxy {7} .

63 /221



Exact Pareto Optimization — exact mode

(When exactness constraint does not meet.) Exactness controlling mode:

o = arg max o’ Ca
oacsSm N——
Decreasing the exactness level.

a'c>alcly, Vjel\J
s.t. a’¢ >0, VjeJs

Decrease the most ‘exact’ objective.

Constraint 1: When there is no conflict between the gradients and exactness, reduce the
level of exactness. In the event of a conflict, reduce only the objectives.
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EPO — Pure Gradient Descent Mode

When exactness constraint is satisfied, equally decrease all objectives.

o = arg max a’Cl
—

aesSm .
€ Decrease all objectives equally

ach > achl, vjieJ\J*
s.t. a’c;>0, Ve

Allow prioritized objectives to decrease

65 /221



Preference-based MGDA (PMGDA)

Core idea:

To find an updating direction d such that,

(d,a™) = argmin « (5)
(vER",a€R)
V@) v<a, iclm]

Decreasing all objectives.

st. { VATv< —a|Vh| - |Iv], (6)
Decreasing the exactness constraint.
0< v <1

Using the approximation, direction v is decomposed by gradients of objective functions
and the constraint function.
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PMGDA - linear relaxation

Using the inequality: v = 27;1 a;@f; + am+1©h, we have

(d,a™) = argmin « (7)
(veR",a€R)
VH(0)Tv <a, ic[m]
Vh(@)'v < —o||Vh(0)|

-~

Linear constraints

This problem is a linear programming problem and can be solved in an O((m + 1)2'38)
complexity.

Compared with EPO

1. The constraint function h(@) can be arbitrary.
2. The EPO LP problem can fail. If fail, EPO switch to solve a LS problem.
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A summary of those methods

Using MOO functions VLMOP?2,

1 2

A(6)=1— oo

2,

2

£(O)=1— e‘H”ﬁ 2

Ly

(a) MGDA (b) PMTL (c) EPO

Figure 1: Results of gradient manipulation methods.
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Disadvantage of gradient manipulating methods

Gradient manipulation methods (e.g.) typically have two steps:

® Needs to calculate the Jacobian matrix, J(m x n).

® Solve a quadratic or a linear programming problem.

‘Those two steps are expensive. Will simple aggregation methods Work?‘
Researchers find a nonlinear function called Tchebycheff from multiobjective evolutionary
algorithms to study gradient-based MOO.
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Back to Tchebycheff (Tche.) aggregation
function (22

Core idea: To find exact PO solutions by optimizing a scalar function.

To find such a solution @ that:
min max {m}

0 ic[m] Aj
Pros and cons of using Tchebycheff:
Pros:

® A simple form, only need one backward propagation.

Cons:
e Convert smooth objective functions into a no-smooth one, leading a slow
convergence rate.

[22] Q. thangla?fl H. Li, “MOEA/D: A multiobjective evolutionary algorithm based on decomposition,” IEEE Transactions on Evolutionary 70/221
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Disadvantage of Tche — Slow convergence

fa(x)
falx)

02 — Pareto Front
-- Preference Vector -
Y Target Solution ~"  Jc Target —— TCH Trajectory
0.0 T . : : 0.0 . . v T
0.0 02 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 08 1.0
fi(x)

fi(x)

(a) Problem & Target (b) TCH

Figure 2: The “zig-zag” convergence behavior of Tche..
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Mitigating slow convergence in Tche. —
Smoothing [13]

A useful approximation:

1
ﬁlog > " exp(11f;) Rips00 max f;
To find such a solution @ that:
.1 fi(0) — z
0= “log LA
arg min " og ,- exp {77 ( Y )}

Convergence rate of non-smooth function: O(1/€?), smooth function: O(1/e).

[13] X. Lin, X. Zhang, Z. Yang, et al., “Smooth tchebycheff scalarization for multi-objective optimization,” in International Conference on Machine
Learning, 2024.
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Results on smooth Tchebycheff

o LS ® COSMOS ® EPO ® TCH o STCH

02g 02 g
0 & 00 &
02 02
n 04
00 00
02
& %
G 08 o ia” 5t 080 10"
(a) Linear Scalarization (b) COSMOS (c) EPO (d) TCH Scalarization (e) STCH Scalarization

Figure 4. The learned Pareto fronts for the 3-objective rocket injector design problem with different scalarization methods.

Table 3. Results (hypervolume difference AHV |) on 6 synthetic benchmark problems and 5 real-world engineering design problems.

F1 F2 F3 F4 F5 Fo6 BarTruss HatchCover DiskBrake GearTrain RocketInjector
LS 1.64e-02 1.37e-02 9.40e-02 2.26e-01 1.72e-01 2.54e-01 8.03e-03  7.89e-03  4.05¢-02 4.01e-03 1.42¢-01
COSMOS 1.58¢-02 1.52e-02 1.28e-02 1.49e-02 1.32e-02 1.90e-02 8.24e-03  2.87e-02  4.33e-02  3.50e-03 3.80e-02
EPO 1.13e-02 7.66e-03 2.02e-02 1.08e-02 8.29e-03 1.96e-02 1.13e-02  1.20e-02  3.38e-02  3.46e-03 5.82e-02

TCH 9.05e-03 7.97e-03 1.84e-02 8.76e-03 6.86e-03 1.45e-02 9.05¢-03 1.0le-02  3.78¢-02 3.91e-03 2.73e-02
STCH 5.95e-03 5.73e-03 9.58e-03 6.73e-03 5.99e-03 1.16e-02 5.65¢-03 7.97e-03  2.79¢-02  3.17e-03 1.08e-02

Figure 3: Smooth Tchebycheff is also helpful to learn the entire PF.
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3.2 Preference-free methods
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Definition of Hypervolume (HV) [23]

Definition (Hypervolume) 121 or

Given a solution set S = {g1),..., g™} and a "

reference point r, the hypervolume of S is ﬁ“‘“ Hypervolume

calculated by: 3 081
HV,(S)=Vol(p|3gcS:q=<p=r), (8) |

where Vol(-) denotes the measure of a set. 0n| — Paretofront

—025 000 025 050 075 100  L25 150
fi(x)

‘ HV both measures the diversity of convergence of a set of solutions.

[23] E. Zitzler and L. Thiele, “Multiobjective optimization using evolutionary algorithms—a comparative case study,” in International Conference on
Parallel Problem Solving From Nature, 1998.
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Calculating the Union of a Set of Regions

Inclusion-Exclusion Principle

The volume of the union of m regions {A1,...,An} can be found using the
inclusion-exclusion principle:

m

U

i=1

m

:Z’Afl_ Z |A;ﬂAj|+..._|_(_1)m—1

i=1 1<i<j<m

i=1

The number of terms in the sum is 2™ — 1, which results in a time complexity of O(2™),
an exponential function of the number of regions.
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Calculating the Union of a Set of Regions

More Efficient Algorithms

Let m be the number of regions and d be the number of dimensions (objectives).

* Two dimensions (m = 2): Bentley's plane-sweep algorithm can solve this in a
O(K log K) time complexity, where K is the number os solutions.

® More than two dimensions (m > 2): The complexity for higher dimensions can be
reduced from exponential, with algorithms achieving, for example, O(K™/?log K).
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Hypervolume gradient

Hypervolume gradient

The hypervolume gradient can be decomposed into two parts:

OH = OH 0y,
%_;ayj 90

1. The first term, g—}"j, is the hypervolume contribution of each point.
J

2. The second term, %, is the Jacobian matrix.
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From “exact” solutions to

uniform solutions

Core idea: Maximize the minimal pairwise

distances in all objective vectors.

' () &)
a Y

y = h(\) = arg min {yi _ Zi}
yeY A

Implement:

Substituting yields the following
bi-level optimization problems:

: (i) )
ﬂ(l)r?.?z(’() 1§riTJn§Kp(y ¥

(k)
(k) — T R 7
y" = ayr(%mln { AN (D0 } , i€ [m].
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Properties of maximizing the minimal pairwise
distances

For a compact and connected PF,

¢ (Asymptotically.) As the number of points K — +o0, the empirical distribution of
the points solving the max-min problem converges to the uniform distribution.

¢ (No-Asymptotically)

® For a bi-objective problem,

® The generated distribution contains two endpoints on PF.
® The neighborhood distances are equal.

80 /221



Results on smooth Tchebycheff

f

f

1 f 10 1
o « Solutions 1o + Solutions + Solutions o + Solutions
Covering Covering 08 Covering Covering
08 08 os
0s 0s o8 0s
04 o4 04 04
02 02 02
02
00 00 00
- ~ o ~
02 535050035 050 675 100 135 02 3355055 050 075 100135 %200 o7 o4 0% o8 10 12 02 53555 035 050075 100 135
fi fi 1 fi
(a) LMPFE (b) DEAGNG (c) Subset selection (d) SMS-EMOA
1 p 1 1
o = Solutions o + Solutions e + Solutions o + Solutions
Covering Covering Covering Covering
o8 08 0s o8
I 06 06 06
04 04 04 04
02 02 02 02
00 oo 00 00
-0 - - -

6775060 0.5 050 075 100 125
f

(e) NSGA3

575000 035 050 075 100135
fi

(f) MOEA/D

0725000 025 0.50 0.75 100 125
1

(g) MOEA/D-AWA

375000 0,35 050 075 10 155
fi

(h) UMOD

Figure 3: Result comparison by different methods on ZDT1.

Figure 4: Smooth Tchebycheff is also helpful to learn the entire PF.
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Multiobjective optimization with Stein Varational
Gradient Descent (MOO-SVGD)

The MOO-SVGD methods

For each solution 6, its update rule is:

1. (MOO-SVGD) A
0; < 0; —o(6;), where &(0;) = ;371 g°(6))k(6,6;) —a Vo,k(6;,6;) .

n

Push solua;ns to PF. Push soIJtrions away
2. (MOO-LD) 6 < 6 — eg”(0) + V2ae€ )
~——
Push solutions to PF Noise term, for diversity
Two terms,
1. The first term, g*(8) o arg max cga {minc[m (g, &i(0)),s.t.|gll < 1}.
2. The second term, a positive definite kernel k(6,6").

Cons: performance is heavily depended on the bandwidth. 01



Results on VLMOP2

0.8

0.6

L,

0.4

0.0

-0.2

(a) MOO-SVGD (b) GradHV

Figure 5: Results of gradient manipulation methods. Disadvantage of MOQ-SVGD: solution quality is
affected heavily wrt the bandwidth in kernel function.
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3.3 Handling many-objectives functions
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Few for Many — Using ‘max’ [24

Setting: when number of objectives is far more than number of solutions.
Core idea: at least one solution in the candidate set can optimize all objectives.

Minimize the max of minimas (CityUHK)

min f(x) = (min fi(x), min (x),- -+, min fm(X)>,

XK:{x(k)}lecX XGXK XEXK XGXK
m>>K
— min f(x) = min f(x), min H(x),---, min fu(x) ).
Xk CX () (x(l)eX ( )’x<2>ex ) "x(mex m(x)

= min | max min fi(x)
XKQX /E[m] X{i}EX

[24] X. Lin, Y. Liu, X. Zhang, et al., “Few for many: Tchebycheff set scalarization for many-objective optimization,” in International Conference on

Learning Representations, 2025. 85/221



Few for Many — Results

0.6
0" 08

1200 1400 1600 1800 2000 2200 2400 2600 2800
A(x)

(a) 10 Solutions (b) 100 Solutions (c) 1,000 Solutions (d) 5 Solutions (Ours)

Figure 1: Large Set v.s. Small Set for Multi-Objective Optimization. (a)(b)(c) Large Set: Classic
algorithms use 10, 100 and 1000 solutions to approximate the whole Pareto front for 2 and 3-objective
optimization problems. The required number of solutions for a good approximation could increase
exponentially with the number of objectives. (d) Small Set: This work investigates how to efficiently
find a few solutions (e.g., 5) to collaboratively handle many optimization objectives (e.g., 100).

Figure 6: Few for many results.
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Few for Many — Sum of Minimal(SoM) [23]

Minimizing the sum of minimal, UCLA.

' f(x) = min f; 0 b e .
i, )= i e gl Gk o Tl Gl

— min f(x) = ( min £ fH(x), -, min f(x) ).
i 0= (i 500, i 500, i o)

S m|n Z min fi(x)

x{’}GX

[25] L. Ding, Z. Chen, X. Wang, et al., “Efficient algorithms for sum-of-minimum optimization,” in International Conference on Machine Learning, 2024.
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Overview

4. Finding an Infinite Set of Solutions

88 /221



Tutorial Part 4:
Finding an Infinite Set of Solutions
Weiyu Chen
HKUST

August 29, 2025
l

:
1JCAA2025

Guangzhou August 29-31
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4.1 Overview
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From Finite to Infinite Solutions

® Previous Goal: Find a finite set of diverse, Pareto-optimal solutions.

® This provides a discrete approximation of the Pareto front.
® Users can choose from a pre-computed set of trade-offs.

® New Goal: Learn the entire continuous Pareto set.

® Why? Many applications require a solution for any user preference, not just a few
predefined ones.
® \We want to generate a user-tailored, optimal model on-demand.

The Core Challenge

It is computationally impossible to train and store an infinite number of neural networks.
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From Finite to Infinite Solutions

The Core Challenge
It is computationally impossible to train and store an infinite number of neural networks.

The Solution
Instead of learning the solutions directly, we learn a mapping function that takes a user
preference vector a and generates the corresponding model parameters 6(a).

Learned Neural Network e(a)

acNAnq

JAQ)

Preference Space Parameter Space Objective Space

92/221



QOutline

4.2 Network Structures
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Overview of Network Structures

To learn the mapping a — 6(a), specialized network architectures are required. We will

introduce three main categories:
1. Hypernetworks: A separate network that generates the weights of the target model.
2. Preference-Conditioned Networks: The target model itself is modified to take the
preference as a condition.
3. Model Combination: A composite model is formed by combining several base
models in a preference-aware manner.

) 01 —
X
Data 5
x Preference as extra input a t(w a: 9) =
)0 =
Data @ g 02 o
2] Preference as condition o %
a—> h(a; ) t(x; 0) | 1] 8 p Target network
. 3
Hypernetwork  Target network Data & —>¢(z, ;)
(a) Methods based on the (b) Methods based on (c) Methods based on model
hypernetwork. preference-conditioned network. combination.
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Hypernetworks

Definition (Hypernetwork)

A Hypernetwork is a neural network whose output is the set of weights for another neural
network (the "target network”).
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Hypernetworks

® Input: User preference vector a; Output: The entire parameter set () for the
target model.
e Examples:
* PHN (Pareto Hypernetwork) 1261, CPMTL [?7]: Pioneering works using an
MLP-based hypernetwork.
® Recent Advances [28]: Using a Transformer architecture as the hypernetwork has
shown superior performance.

a—> h(a; @)

Hypernetwork  Target network

[26] A. Navon, A. Shamsian, E. Fetaya, et al., “Learning the Pareto front with hypernetworks,” in International Conference on Learning
Representations, 2021.

[27] X. Lin, Z. Yang, Q. Zhang, et al., “Controllable Pareto multi-task learning,” arXiv preprint arXiv:2010.06313, 2020.

[28] T. A. Tuan, N. V. Dung, and T. N. Thang, “A hyper-transformer model for controllable Pareto front learning with split feasibility constraints,”

arXiv preprint arXiv:2402.05955, 2024.
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Hypernetworks: The Scalability Challenge

Major Challenge: Scalability

The hypernetwork’s output layer must match the size of the target network’s parameters,
which can be millions or billions. This makes the hypernetwork itself enormous.

Solution: Chunking

The parameter space of the target network is divided into smaller chunks. The
hypernetwork generates parameters for each chunk sequentially or in parallel.

a x

C

h(a; @)

Hypernetwork

[&]

C3

Target network
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Preference-Conditioned Networks: Input
Conditioning [?°]

Instead of a separate network, modify the target model to be directly aware of the
preference a. This is generally more parameter-efficient.

A. Input Conditioning
® |dea: Concatenate the preference vector o« with the model's input data x.
® Pros: Very simple to implement.

® Cons: Has limited capacity to create truly diverse solutions, as the conditioning
signal is only injected at the first layer.

Preference as extra input o

Data @ t(@, o; 0)

[29] M. Ruchte and J. Grabocka, “Scalable Pareto front approximation for deep multi-objective learning,” in IEEE International Conference on Data
Mining, 2021.
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Preference-Conditioned Networks: Feature
Modulation [311 [32] [33]

B. Feature Modulation

e Idea: Use Feature-wise Linear Modulation (FiLM) layers [39 to condition
intermediate feature maps.

® An MLP takes o and generates channel-wise scaling (v) and shifting (3) parameters.

u,c = ’Yc(a) Uc + 5::(0)
~—— ——

scale shift

[30] E. Perez, F. Strub, H. De Vries, et al., “FiLM: Visual reasoning with a general conditioning layer,” in Annual AAAI Conference on Artificial
Intelligence, 2018.

[31] A. Dosovitskiy and J. Djolonga, “You only train once: Loss-conditional training of deep networks,” in International Conference on Learning
Representations, 2020.
[32] W. Chen and J. Kwok, “Multi-objective deep learning with adaptive reference vectors,” in Conference on Neural Information Processing Systems,
2022.
[33] D. S. Raychaudhuri, Y. Suh, S. Schulter, et al., “Controllable dynamic multi-task architectures,” in /EEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022.
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Preference-Conditioned Networks: Feature
Modulation [311 [32] [33]

B. Feature Modulation
® An MLP takes a and generates channel-wise scaling (v) and shifting (3) parameters.

u/c = Ye(a@) -uc + Be(a)
—— ——

scale shift

Preference as condition o --

Data @ t(z, a; 0)

[31] A. Dosovitskiy and J. Djolonga, “You only train once: Loss-conditional training of deep networks,” in International Conference on Learning
Representations, 2020.

[32] W. Chen and J. Kwok, “Multi-objective deep learning with adaptive reference vectors,” in Conference on Neural Information Processing Systems,
2022.

[33] D. S. Raychaudhuri, Y. Suh, S. Schulter, et al., “Controllable dynamic multi-task architectures,” in IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022.
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Model Combination [34

This approach constructs the final model by combining multiple pre-trained or
jointly-trained base models. It strikes a balance between flexibility and parameter
efficiency.

Linear Parameter Combination (PaMal)

® Learn m base models (01, ...,0,,), one for each objective's extreme point.

® The final model is a simple weighted average of their parameters based on the
preference cx.

9(04) = Z 04;0,'
=l

® Drawback: Inefficient if the number of objectives m is large, as it requires training
and storing m full models.

[34] N. Dimitriadis, P. Frossard, and F. Fleuret, “Pareto manifold learning: Tackling multiple tasks via ensembles of single-task models,” in
International Conference on Machine Learning, 2023.
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Redundancy in Model Combination [35]

Observation from PaMal

When training multiple base networks (61, ...,6), their parameters become highly
similar. This redundancy suggests that storing m full networks is inefficient.

0.8

—e— Layer1 3
S—
~o— Layer2 G
o .
—eo— Layer 3 e
06
/0/.
z —
Zoa —
&
o
£
8
o2
004 *
0 2 a 6 8 10

Epochs

[35] W. Chen and J. Kwok, “Efficient Pareto manifold learning with low-rank structure,” in International Conference on Machine Learning, 2024.
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LORPMAN: Low-Rank Pareto Manifold
Learning [3%

The Core Idea

Instead of m full networks, learn one shared main network (6y) and m task-specific
low-rank update matrices.

oy ay - ay  €--- ,V‘Z;g:;', ---a
f1(6(a))  f2(6(c)) Fm(8(c)) !
Weight low-rank matrices
| (IEE
i a B} A} g

[35] W. Chen and J. Kwok, “Efficient Pareto manifold learning with low-rank structure,” in International Conference on Machine Learning, 2024.
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LORPMAN: Low-Rank Pareto Manifold
Learning [3%

The Core Idea
Instead of m full networks, learn one shared main network (6p) and m task-specific
low-rank update matrices.

The final model parameters are generated by:

m
G(a) = 09 —FSZO[,’ B/A;
Shared Features =1 Task-Specific Low-Rank Update
® Gg: A full-rank main network that captures common features across all tasks.
e B, ¢ R A; € R™*k: Low-rank matrices for task i (where rank r < d, k). They
capture task-specific knowledge.

_® s: Scaling factor.

[35] W. Chen and J. Kwok, “Efficient Pareto manifold learning with low-rank structure,” in International Conference on Machine Learning, 2024.
104 /221



Model Combination: Mixture of Experts [3°]

¢ |dea: Instead of training from scratch, merge several existing expert models.

® A gating network, conditioned on the preference «, decides how to weight the
“differences” (task vectors) between the individual expert models and a unified base
model.

Transformer Block x L layers I>< T+1 models] PWE MoE

input _| Tape i hin
input _ Attention
tokens E2 %

pout

Decoder D, *
(single-layer MLP)

[36] A. Tang, L. Shen, Y. Luo, et al., “Towards efficient Pareto set approximation via mixture of experts based model fusion,” arXiv preprint
arXiv:2406.09770, 2024.
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4.3 Training Strategy
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Training Strategy

Regardless of the structure (Hypernetwork, etc.), we need to train its underlying
parameters, which we denote by ¢.

General Training Objective

The goal is to minimize the expected loss over all possible preferences and all training
data.

M Earmasyy Bry)o [Balb(t(x; 0(ai 6)). )]

¢: The learnable parameters of the structure (e.g., hypernetwork weights).

® «: A preference vector, randomly sampled from a distribution over the simplex (e.g.,
Dirichlet) during training.

0(a; ¢): The target model parameters generated for preference c.

Za(): An MOO algorithm that produces a single solution given preference vector c.

The choice of the loss function L is crucial. Let's look at the common options. 107 /221



Choosing the Training Loss

¢ Scalarization Methods (Most Common)

® Linear Scalarization: Combine objectives into a single weighted sum. Simple and
effective.

L£(0) = Z aifi(0)

® Used by PHN, COSMOS, PaMal, LORPMAN.
® Tchebycheff / Smooth Tchebycheff: Can handle non-convex Pareto fronts better
than linear scalarization.
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Choosing the Training Loss

® Preference-Aware MOO Methods
® Goal: Ensure the final solution is precisely aligned with the preference vector c.
® Example: Use the Exact Pareto Optimal (EPO) solver as the loss function. This
solver finds a gradient descent direction that explicitly pushes the solution's objective
vector to be proportional to a.
¢ Hypervolume Maximization
® Goal: Ensure the learned Pareto set has good diversity and convergence.
® How it works (PHN-HVI [37]): In each step, sample a batch of preference vectors,
generate the corresponding solutions, and then compute a loss based on maximizing the
hypervolume of this set of solutions.

[37] L. P. Hoang, D. D. Le, T. A. Tuan, et al., “Improving Pareto front learning via multi-sample hypernetworks,” in Annual AAAI Conference on
Artificial Intelligence, 2023.
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5. Theoretical Foundations
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5.1 Overview
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Theoretical Foundations of Gradient-Based MOO

While practical algorithms have advanced rapidly, their theoretical underpinnings are
crucial for understanding their behavior and limitations. We will focus on two key areas:
1. Convergence Analysis

2. Generalization Analysis

® Does the algorithm converge? ® How well does a model trained on a

® If so, to what kind of point? finite dataset perform on unseen data?

e At what rate does it converge? ® Important for real-world performance.

¢ nitial .
3. Test

f2(0)

Final

12(6)

O Train

f1(6) f1(6)
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5.2 Convergence of Gradient-Balancing Methods
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The Goal of Convergence: Pareto Stationarity

In non-convex optimization (like deep learning), we typically aim for stationary points. In
MOO, the equivalent concept is Pareto stationarity.

Definition (Pareto Stationary Point)

A solution 8* is called Pareto stationary if the convex hull of its objective gradients
contains the zero vector. That is, there exists a weight vector A € Ap,_1 such that:

Xm: A VE(6%) =0
i=1

® This is a necessary condition for Pareto optimality.
e If all objectives are convex, it is also a sufficient condition.

¢ Gradient-balancing methods (like MGDA) are designed to find a common descent
direction d. If no such non-zero direction exists, we are at a Pareto stationary point.
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Convergence in the Deterministic Setting

Setting: Deterministic (Full-Batch) Gradient

We have access to the true gradient of each objective function at every iteration. This is
unrealistic in deep learning but provides a theoretical baseline.

¢ Key Result for MGDA [38]:
® Under mild conditions, MGDA is guaranteed to converge to a Pareto stationary point.
® The convergence rate is O(K~1/2), where K is the number of iterations.
® This rate is identical to that of gradient descent in single-objective optimization.

¢ Proof Intuition:
® The common descent direction d found by MGDA is constructed to be a descent
direction for all objectives simultaneously (or remain stationary if at an optimum).
® This ensures a guaranteed reduction in a potential function, similar to the
single-objective case.

[38] J.-A. Désidéri, “Multiple-gradient descent algorithm (MGDA) for multiobjective optimization,” Comptes Rendus Mathematique, vol. 350, no. 5-6,

pp. 313-318, 2012.
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Convergence in the Deterministic Setting

Setting: Deterministic (Full-Batch) Gradient

We have access to the true gradient of each objective function at every iteration. This is
unrealistic in deep learning but provides a theoretical baseline.

e Other Algorithms: Methods like CAGrad [15], PCGrad [1¢], and Nash-MTL [17]
also provide similar convergence guarantees in the deterministic setting.

[15] B. Liu, X. Liu, X. Jin, et al., “Conflict-averse gradient descent for multi-task learning,” in Conference on Neural Information Processing Systems,
2021.
[16] T. Yu, S. Kumar, A. Gupta, et al., “Gradient surgery for multi-task learning,” in Conference on Neural Information Processing Systems, 2020.
[17] A. Navon, A. Shamsian, I. Achituve, et al., “Multi-task learning as a bargaining game,” in International Conference on Machine Learning, 2022.
117 /221



The Challenge of Stochastic Gradients

Setting: Stochastic Gradient

In deep learning, we use mini-batches to estimate gradients. These estimates are noisy.

gi(0) ~ Vfi(0)

The Core Problem
The common descent direction d = ) \;g; is now computed with noisy gradients. Even if
the g; are unbiased estimates of the true gradients, the optimal weights A* found by
solving the MGDA subproblem are biased.
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An Early Attempt: Increasing the Batch Size [3°

® The Strategy: Use an increasing batch size that grows with the number of
iterations.

® Why it Works: As the batch size grows, the variance of the stochastic gradients
decreases, making them more accurate. Eventually, the noise becomes small enough
to ensure convergence.

® The Problem: This is computationally very expensive and often impractical for
training large models.

The Goal

Achieve convergence with a constant batch size.

[39] S. Liu and L. N. Vicente, “The stochastic multi-gradient algorithm for multi-objective optimization and its application to supervised machine
learning,” Annals of Operations Research, pp. 1-30, 2021.
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Variance Reduction via Smoothing

Method: CR-MOGM [40]

Reduce the high variance of the weight vector A by smoothing it over time.

e Core ldea: Use an exponential moving average (EMA) to stabilize the weights A.
The update at iteration k is:

AR = (1= AB L 4Ak-D

where A% are the noisy weights computed from the current stochastic gradients and
~ is a smoothing factor.

e Effect: This smoothing process stabilizes the final update direction, preventing large
fluctuations caused by gradient noise.

e Limitation: The convergence proof requires a bounded function value assumption,
which may not hold for all problems.

[40] S. Zhou, W. Zhang, J. Jiang, et al., “On the convergence of stochastic multi-objective gradient manipulation and beyond,” in Conference on
Neural Information Processing Systems, 2022.
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Gradient Tracking

Method: MoCo 1l

Address gradient bias by using a tracking variable.

e Core Idea: A tracking variable g,(k)

objective i. It is updated as:

e =TT (& - & &)

L;

approximates the true gradient for each

where g,(k) is the current stochastic gradient, v is a step size, and HL,- is a projection
to ensure the tracked gradient remains bounded.
¢ Limitations:
® Also relies on the bounded function value assumption.
® The analysis requires the number of iterations K to be very large, making it less

practical for problems with many objectives (m).

[41] H. Fernando, H. Shen, M. Liu, et al., “Mitigating gradient bias in multi-objective learning: A provably convergent approach,” in International
Conference on Learning Representations, 2023.
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Bias Correction via Double Sampling

Method: MoDo [42I

Directly address the bias in the weight calculation.

e Core Idea: Use a double sampling technique to get an unbiased estimate of the
gradient inner product matrix G ' G, which is key to finding the weights.

® Mechanism:
® At each iteration, draw two independent mini-batches, zf and z(
® Use gradients from these separate batches to construct an unblased estimate:

A6 = T (A(“—nGW(zl(k))TG(“(zz(k)))\(k))

Ar'nfl

k)

e Key Benefit: Achieves a convergence guarantee without requiring the bounded
function value assumption. It also guarantees a bounded conflict-avoidant distance.

[42] L. Chen, H. Fernando, Y. Ying, et al., “Three-way trade-off in multi-objective learning: Optimization, generalization and conflict-avoidance,” in
Conference on Neural Information Processing Systems, 2023.
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Regularizing the Update Direction

Introduce a direction-oriented regularizer to guide the common descent direction.

® Core ldea: Regularize the common descent direction to keep it within a
neighborhood of a preferred target direction (e.g., the average gradient gp).

® Mechanism: The weight update incorporates the target direction gg. Like MoDo, it
uses double sampling for an unbiased update:

A = T (A9 [6W(9)T (60()AY 1 g0(24))])

Ap—1

where ~ is a regularization factor.

e Key Benefit: Also achieves convergence without the bounded function value
assumption.

[43] P. Xiao, H. Ban, and K. Ji, “Direction-oriented multi-objective learning: Simple and provable stochastic algorithms,” in Conference on Neural
Information Processing Systems, 2023.
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Summary of Stochastic Convergence Results

Table 1: Sample complexity to find an e-accurate Pareto stationary point.

Method Batch Size Key Assumptions Complexity Notes
SMG Increasing (O(e2)) LS, BG O(e™%) Impractical batch size
CR-MOGM  Constant (O(1)) LS, BG, BF O(e7?) Assumes bounded function
MoCo Constant (O(1)) LS, BG, BF 0(e7?) Assumes bounded function
MoDo Constant (O(1)) LS, BG O(e7?) Removes BF assumption
SDMGrad Constant (O(1)) LS, BG O(e72) Regularized direction
SGSMGrad  Constant (O(1)) GS 0(e7?) Weaker smoothness assumption
LS: L-smooth, GS: Generalized L-smooth, BG: Bounded Gradient, BF: Bounded Function value.
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5.3 Generalization Theory
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Generalization Theory in MOO

Generalization in MOO is less explored than convergence but is gaining traction.
¢ Algorithm-Independent Bounds:
® Used tools like Rademacher complexity to bound the generalization error for
scalarization methods [#41[43].
e Sample Complexity (Offline Learning):
® Asks: How many samples are needed to guarantee a good solution?
® This has recently been a very active area, leading to near-optimal bounds.
® Online Learning and Regret:

® Considers a sequential setting where data arrives over time.
® The goal is to minimize regret against the best fixed solution in hindsight.

[44] C. Cortes, M. Mohri, J. Gonzalvo, et al., “Agnostic learning with multiple objectives,” in Conference on Neural Information Processing Systems,
2020.

[45] P. Stikenik and C. Lampert, “Generalization in multi-objective machine learning,” Neural Computing and Applications, pp. 1-15, 2024.
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Generalization: The Offline Problem Setup

Question: What is the sample complexity of MOQO?

Given a fixed error tolerance € and a hypothesis class H, how many data samples do we
need to draw from m distributions {D;} , to find a good hypothesis h?

The Goal: Find a hypothesis h such that its worst-case loss is close to the best possible

worst-case loss.

< *
g o) = g oy o ()

® This problem formulation, related to Tchebycheff scalarization, was highlighted as an
open problem in 2023 146l and has since seen rapid progress.

[46] P. Awasthi, N. Haghtalab, and E. Zhao, “Open problem: The sample complexity of multi-distribution learning for vc classes,” in Annual

Conference on Learning Theory, 2023.
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Generalization: Offline Sample Complexity Bounds

Lower Bound 7]

Any algorithm requires at least this many samples:

5 <VCdim(7—[) + m)

€2

This bound tells us the fundamental difficulty of the problem, depending on model
complexity (VCdim(7{)) and the number of objectives (m).

[47] N. Haghtalab, M. Jordan, and E. Zhao, “On-demand sampling: Learning optimally from multiple distributions,” in Conference on Neural

Information Processing Systems, 2022.
128 /221



Generalization: Offline Sample Complexity Bounds

Near-Optimal Upper Bound 48] [49]

Concurrent works developed algorithms (based on boosting or hedging) that achieve an
(almost) matching upper bound:

€2

5 (VCdim(?—L) + m)

This result essentially resolves the sample complexity question for this problem setting.

[48] B. Peng, “The sample complexity of multi-distribution learning,” in Annual Conference on Learning Theory, 2024.

[49] Z. Zhang, W. Zhan, Y. Chen, et al., “Optimal multi-distribution learning,” in Annual Conference on Learning Theory, 2024.
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Generalization: The Online Learning Setup

Question: What is the regret of learning sequentially?

In an online setting, data arrives over K iterations. An algorithm A produces a sequence
of hypotheses hy, hy, ..., hk.

The Goal: Minimize the cumulative regret, which is the difference between the
algorithm’s average performance and the performance of the best single hypothesis in
hindsight.

= (k) K
heH K p irg[z;:(]EDi( )

[y
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Generalization: Online Regret and Open Questions

Upper Bound on Regret [

An adaptive online mirror descent algorithm was shown to achieve a regret of:

This shows that as the number of iterations K grows, the average regret approaches zero.

[50] M. Liu, X. Zhang, C. Xie, et al., “Online mirror descent for tchebycheff scalarization in multi-objective optimization,” arXiv preprint
arXiv:2410.21764, 2024.
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Generalization: Online Regret and Open Questions

¢ Online-to-Batch Conversion: Using this online algorithm to solve the offline
problem gives a suboptimal sample complexity. Can an online learner, perhaps with a
better conversion scheme, match the optimal offline sample complexity? This
remains an interesting open problem [49],

[49] Z. Zhang, W. Zhan, Y. Chen, et al., “Optimal multi-distribution learning,” in Annual Conference on Learning Theory, 2024.
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6. Applications in Deep Learning
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6.1 Applications in Computer Vision
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Application: Computer Vision

Most Representative Application: Multi-Task Dense Prediction

Training a single model to simultaneously perform multiple pixel-level prediction tasks on
an image. This is crucial for applications like autonomous driving and robotics.

Vanishing Points 2D Edges 3D Edges 2D Keypoints

3D Curvature In-painting
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Application: Computer Vision

¢ Architecture: To be efficient, multi-task models use a large shared encoder (e.g., a
ResNet backbone) to extract features, followed by small, task-specific decoder heads.

— Task A Output
Input Image — ’Shared Encoder \ — Features — — Task B Output
— Task C Output

® The Conflict: During backpropagation, the gradients from different task losses flow
back into the shared encoder.

® |f Task A and Task B require conflicting feature updates in the shared layers, they can
interfere with each other.
® This can lead to one task dominating training, while others suffer.

® The MOO Formulation:
® Each task’s loss is treated as a separate objective function.

® The goal is to find a Pareto-optimal set of shared parameters that balances performance
across all tasks.
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6.2 Applications in Model Merging
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Application: Preference-Aware Model Merging

The Problem

We have many powerful models fine-tuned for specific tasks (e.g., on HuggingFace). It's
desirable to merge them into a single model to save memory and deployment costs.

The Limitation of Existing Methods

Current merging techniques (e.g., weight averaging, task arithmetic) produce a single,
“one-size-fits-all" model. This model represents a fixed trade-off and cannot adapt to
different user needs.
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Formulating Merging as an MOQO Problem

[51]

Accuracy on Model B's Dataset N

Merged model by
exsiting methods

Accuracy on Model A's Dataset

A G
>

The Goal
Find a Pareto set of merged model

s, where each point represents a different optimal

trade-off between the original models’ capabilities.

[51] W. Chen and J. Kwok, “Pareto merging: Multi-objective optimization for preference-aware model merging,” in International Conference on

Machine Learning, 2025.
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Formulating Merging as an MOQO Problem

For different merging scenarios, the objectives vary:
¢ Data-Free Merging:
® Minimize the distance of the merged model @ pergeq to each of the original fine-tuned
models @ in parameter space.

Objective k || Omerged — Okl

¢ Data-Based Merging:
® Minimize the prediction entropy of the merged model on each task’s unlabeled data
distribution. A lower entropy often correlates with higher confidence and accuracy.

Objective k :  Entropy(f (O merged; data))

Challenge

Naively solving the MOQO problem for every possible user preference is computationally
infeasible and requires storing all original models.
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Pareto Merging: A Parameter-Efficient Solution

The Pareto Merging Structure
Learn a single, preference-aware model composed of two parts:
1. Preference-Independent Base: A single, high-quality merged model.

2. Preference-Dependent Personalization: A small, low-rank tensor that modifies
the base model according to the user preference vector a.

0(0&) =0Opase + Gx1AX2BXx3x

Low-rank tensor modification

This structure efficiently generates a custom model for any preference c.
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Pareto Merging: A Parameter-Efficient Solution

~
rxd 1) Q
1 ‘Y Merged Model
1 B for User 1
1
! Kx1
1
I + ) -Merged Model
1 A' G . for User 2
1
! X
! rxrx K (n)
n
|\ Preference- mdependen'r preference-dependent ~y werged Model
N base model R4 low-rank tensor for User n
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MAP: Low-compute model merging with amortized

pareto fronts

[52]

Task vectors Model merging
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[52] L. Li, T. Zhang, Z. Bu, et al., “Map: Low-compute model merging with amortized pareto fronts via quadratic approximation,” arXiv preprint

arXiv:2406.07529, 2024.
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6.3 Applications in Reinforcement Learning
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Application: Reinforcement Learning

Standard Reinforcement Learning (RL) Multi-Objective RL (MORL)

® An agent learns a policy 7 to maximize ® The agent receives a vector-valued
a scalar cumulative reward in an reward at each step: r(s,a) € R™.
environment.

The MORL Objective

Learn a policy network mg(s) that finds a Pareto-optimal trade-off for the vector of
expected discounted rewards:

mén f(0) := |-Ex,

Z/Btrl t] 7"'7_]E7'rg

o]
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Application: Reinforcement Learning

Meta-World: 10 Objectives 153!

Z ﬁt’iﬂ

—

button press door open drawer close drawer open peg insert
pick place push reach window open window close

[53] T. Yu, D. Quillen, Z. He, et al., “Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning,”

Robot Learning, 2020.

in Conference on
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Application: Reinforcement Learning

Meta-World: 50 Objectives 53!

cssembly  basketball  putton press pulton presg button press. bufton press. coffes button coffee pull  coffee push bin picking

dial turn disassemble door open  door unlock drawer close drawer open foucet open foucet close hammer

hondle press handle press hondie pull  handle pull  lever pull  peg insert  peg unplug  pick pick place

box close

door lock

I {7 i I i | i h k h h 1 h
plate side  plote siide  plate side  plate slide  push back pusl push wa reac

At
'O

reach wall  shelf place  soccer stick push  stick pull  sweep into  sweep window open window close

door unlock

hand insert

[53] T. Yu, D. Quillen, Z. He, et al., “Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning,” in Conference on
Robot Learning, 2020.
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Approaches in MORL

1. Scalarization-Based Methods: The most common approach is to use linear
scalarization to convert the reward vector into a scalar reward, then solve with
standard RL algorithms.

2. Gradient-Balancing Methods: Apply methods like MGDA directly to the policy
gradients derived from each reward objective. This directly manages conflicting
policy updates.

3. Learning the Entire Pareto Set: Learn a single, preference-conditioned policy
mo(s, ) that can act optimally for any desired trade-off . This connects directly
back to the infinite-set learning methods.
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6.4 Applications in LLM Alignment
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6.4 Applications in LLM Alignment
6.4.1 Multi-Objective Alignment
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Multi-Objective Alignment in LLM

. Can you give me information on

how to hack a bank account?

% o\ helpfulness: 0.3

1 q .
: Hacking a bank account requires ... 2L
y 9 q harmlessness:

y2 : No, | cannot give you information ...

@Q helpfulness: y1 > y2
_ Base LLM =3
harmlessness: y1 < y2

e LM alignment is crucial to ensure that their outputs reflect human values;
® but human values are multi-dimensional and may conflict;
e for example, not just generating helpful responses, but also ensuring they are

harmless.
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Rewarded Soups (RS) 4

x ; Canyougive me information on
" how to hack a bank account?

y! : Hacking a bank account requires ...

y2 :No, | cannot give you information ...

iQ helpfulness: y1 > y2

harmlessness: y1 < y2

Rewarded Soups and MOD (Training)

MOD (Inference)

e fine-tune m LLMs for m preference dimensions separately;
e parameter- (RS) or logit- (MOD) space combination at inference.

[54] A. Rame, G. Couairon, C. Dancette, et al., “Rewarded soups: Towards Pareto-optimal alignment by interpolating weights fine-tuned on diverse
rewards,” in Conference on Neural Information Processing Systems, 2023.
[55] R. Shi, Y. Chen, Y. Hu, et al., “Decoding-time language model alignment with multiple objectives,” in Conference on Neural Information

Processing Systems, 2024.
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Panacea [3I

Some Notations:
® m: the dimension of preference;
e preference dataset D; = {(x,y!,y?,z)} for the i-th dimensional preference;

® User preference vector a = (a1,...,am) € Ap_1.

Formulate Multi-objective Alignment as an MOO Problem:

mein [f(’]’l’g,Dl), SRR f(ﬂ-BaDm)]Ta

where f (g, D;) is the loss function of fine-tuning LLM 7rg on i-th preference using any
post-training methods (e.g., SFT, PPO, and DPO).

[3] Y. Zhong, C. Ma, X. Zhang, et al., “Panacea: Pareto alignment via preference adaptation for LLMs,” in Conference on Neural Information
Processing Systems, 2024.
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Panacea [3I

Each a corresponds to a Pareto-optimal 6, thus learning () to approximate the whole
Pareto set. But how to achieve 6(a)?

SVD-LoRA:
6(a) =6y + USV,

® Oy € RP*9 is the pre-trained weight;

® 3 is a diagonal matrix defined as diag(o1,...,0r, 5041, ...,5am), {oj}/_; and s are
learnable scalars;

o U e RPX(r+m) and V € RIFm)*4 are learnable matrices;

® ris the rank.

[3] Y. Zhong, C. Ma, X. Zhang, et al., “Panacea: Pareto alignment via preference adaptation for LLMs,” in Conference on Neural Information
Processing Systems, 2024.
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Panacea Bl

How to train 6(«)?

m
minEa~a,, | Y if (To(a), Di)| ;
i=1

where © denotes the learnable parameters in SVD-LoRA.

[3] Y. Zhong, C. Ma, X. Zhang, et al., “Panacea: Pareto alignment via preference adaptation for LLMs,” in Conference on Neural Information

Processing Systems, 2024.
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6.4 Applications in LLM Alignment

6.4.2 Multi-Objective Test-Time Alignment
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Limitations of Multi-Objective Alignment

Key Challenge

Computationally expensive: require fine-tuning at least one base LLM (e.g., fine-tuning
a 65B LLM requiring 8¥*A100-80G GPUs).

Open Problem
Can we achieve multi-objective alignment while keeping the base LLM frozen?
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GenARM D71

Core ldea
Use a reward model to guide the frozen base LLM's generation, inspired by the
closed-form solution of RLHF [36!:

1
log 7 (y|x) = —logZ(x) + logmhase(ylx) +— r(x,y)
—_——— ~—— ~—_———— ﬂ ——
output of the aligned LLM partition function  output of the base LLM reward score

Key Challenge
Need the token-level rewards for effective and efficient guidance.

[56] R. Rafailov, A. Sharma, E. Mitchell, et al., “Direct preference optimization: Your language model is secretly a reward model,” in Conference on
Neural Information Processing Systems, 2023.
[57] Y. Xu, U. M. Sehwag, A. Koppel, et al., “GenARM: Reward guided generation with autoregressive reward model for test-time alignment,” in
International Conference on Learning Representations, 2025.
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GenARM: ARM and Its Training

Autoregressive Reward Model (ARM): trained for outputting token-level reward.

e ARM design:
r(x,y) = Z log o (yt|X, y<t)-
t
® Training objective:
f(m9, D) := —Exy1y22)p logo [(—l)zﬁr (r(y",x) = r(y*,x)) }

where z indicates preference (z = 1 means y! is preferred over y?).
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GenARM: Training and Inference

—— — = = = =

— (“ helpfulness: 0.3
. Can you give me information on | (AD &£/ harmlessness:
" how to hack a bank account? | —_—_— e e - - -

y1 : Hacking a bank account requires ... |

Base LLM

y2 :No, | cannot give you information ..

§© helpfulness: y1 > y2 * %

harmlessness: y1 < y2

e e e e e e e e - =~

® train m ARMs {7y, } ; instead of fine-tuning the base LLM;

® given preference vector «, guided generation via multiple ARMs:

1 m
log 7 (ye|x, y<t) = —log Z(x,y<t) + 10g hase(Ve[x, y<t) + 3 Z ajlog e, (ye[X, y<t).
i=1
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Limitations of GenARM

=0 N
\
x: Can you give me information on | @ |
" how to hack a bank account? | |
A
y1 : Hacking a bank account requires ... |
Base LLM I
|

-

® %

y2 : No, | cannot give you information ...
‘Q helpfulness: y1 > y2

harmlessness: y1 < y2

® m ARMs increase inference cost;

@helpfulness: 0.3

harmlessness:

o % @
E /\/\“’3*/\/\+ ,:

® ARMs are unaware of each other, leading to misalignment between guided generation

and preference vector.
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PARM D58

Formulate the training of ARMs as an MOO problem:
mein [f(Trg, Dl)? T f(ﬂ-@a 13'“)]T ’
where f (g, D;) is the training objective of ARM on i-th preference dimension.

learn a single and unified ARM 6(«), called preference-aware ARM (PARM), to
approximate the entire Pareto set.

[58] B. Lin, W. Jiang, Y. Xu, et al., “PARM: Multi-objective test-time alignment via preference-aware autoregressive reward model,” in International
Conference on Machine Learning, 2025.
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Preference-aware Bilinear Low-Rank Adaptation
(PBLoRA)

How to achieve 0(a):
0(a) = 60y + sBW(a)A,

where B € RP*" and A € R"*9 are learnable low-rank matrices. W(a) € R"™*" is treated
as a weighted matrix that depends on a.

e W is a diagonal matrix in SVD-LoRA BB while a full matrix in PBLoRA;
e More expressive: subspace of dimension r? vs. r in standard LoRA;

® More effective and efficient conditioning: the number of parameters in W is
much smaller than B and A.

[3] Y. Zhong, C. Ma, X. Zhang, et al., “Panacea: Pareto alignment via preference adaptation for LLMs,” in Conference on Neural Information
Processing Systems, 2024.
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PBLoRA

Splitting into preference-agnostic and preference-aware terms:

w 0 A
BW(a)A = [B; By] [ 01 Wz(a)] [Aj = BiW;A; +BoWs(a)Ay,

preference-agnostic  preference-aware
where Wy € R™"*" s learnable and Wy(a) = Linear(a; ¢) € R2%"2,

¢ Parameter-efficient: a PBLoRA ~ a (r; + rz)-rank LoRA.
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PARM: Training and Inference

® Training objective of PARM:

mlnEaNA [Za f( 71'9 (a)> )] ,

where ® denotes the parameters of PBLoRA.

® Given user preference vector «, guided generation via PARM:

1
log w(ye|x,y<t) = — log Z(x,y<t) + log hase (yt|X, y<¢) + 5 log 770(a)()’t|X, y<t)-

® Compared PARM to GenARM:

1. asingle ARM vs. m ARMs: faster inference;
2. a single PARM explicitly manages trade-offs between different preferences vs.
independently training different ARMs in GenARM.
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Weak-to-Strong Ability

® allow smaller reward model to guide larger base LLM;
® climinate need for expensive training of large models;
® make multi-objective alignment accessible with limited resources.

15 Y Base Model
104 -awiond
ﬂ PARM (ours)
g 54
@
o 01
£
s 51
T
—10 A N
2
—15 = T T T
=25 0.0 2.5 5.0
Helpfulness

Figure 8: Learned Pareto fronts of different methods. 7B reward model guides 65B frozen LLM (left) and
1.1B reward model guides 7B frozen LLM (right).
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6.5 Applications in Al4Science
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An molecule needs to balance multiple properties
including

Ph

Ph
0 OLOH o OLOH
N
; P ;
Me
cl cl
cl

Cl

Figure 9: Molecule examples.

® QED (drug-likeness).

® [ ogS (log of solubilit
® SA (synthetic accessibility). gS (log ubility)

® JNK3 (c-Jun N-terminal Kinase 3),
coefficient). ® GSK3p (Glycogen Syntheses Kinase 3

Beta).
e DRD2 (dopamine receptor D2 affinity) )
Those properties can be calculated by: https://github.com/sdv-dev/RDT.

® LogP (octanol-water partition
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Ways to generate multiple-properties molecules

We introduce three methods,

1. Using large language models.
® Use LLM to conduct crossover and mutations.

2. Using diffusion models.
® Update the noise which generate molecular.

3. Using Gflownet.
® To learn how to add a new fragment.
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Molecular Language-Enhanced Evolutionary
Optimization (MOLLEO) B

1. The summation of individual
objectives is used as a single
objective, and the nc fittest
members are retained; and

2. Only the Pareto frontier of the
current population is kept.

Tnitial pool of molecules
x

Mati
o —

selection

Repeat until the maximal budget is

Candidate generation:

et used.

Update:
molecule_pool
+= [xt, y_t]

Black-box oracle: y_t = £(x_t)

Figure 10: MOLLEO frameworks.

[59] H. Wang, M. Skreta, C. T. Ser, et al., “Efficient evolutionary search over chemical space with large language models,” in International Conference

on Learning Representations, 2025.
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MOLLEO - results

GSK3B vs SA QED vs SA QED vs GSK38
o et . [ T , 20
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(a) GSK38 vs. SAscore in task 2 (b) QED vs. SAscore in task 2 (c) QED vs. GSK3p in task 2
JNK3 vs SA QED vs SA QED vs JNK3
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Figure 11: MOLLEO results.
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MO-LLM — A LLM-based multiobjective

optimization platform [60]

Best molecules.

P——
B e
BAON OVE rurminston | (Gesimimess)  Overse mobietves

% 0T

Hybrid selection

Evolving experience

Initial population

Newsipeienca LM

o e@s
TG o7
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) Rewarding system

Ao
3@} consiaims.

Next population

Mutation or Crossover by LLM

Figure 12: MO-LLM framework.

[60] N. Ran, Y. Wang, and R. Allmendinger, “MOLLM: Multi-objective large language model for molecular design-optimizing with experts,”

preprint arXiv:2502.12845, 2025.
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worst candidates
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MO-LLM — A LLM-based multiobjective
optimization platform [60]

Core difference between MOLLEO:
® Summarize experience into prompts.
® Using a hyper-rid way to maintain populations: diversity 4+ convergence.

Prompt

— Save experience information into prompt.

\ -

g %lfo‘ ol

Crossover and
mutation.
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MO-LLM - results

MOLLM: Multi-Objective Large Language Model for Molecular Design — Optimizing with Experts

METRIC GB-GA JT-VAE GB-BO MARS REINVENT MOLLEO DyMoL GENETIC-GFN MOLLM(OURS)
(WORST INITIAL)

Topl F 4.048 3.817 3.665 3.907 - 4.096 - - 4.187
Toprl0 F 4.019 3.782 3.637 3.853 - 4.044 - - 4.152
UNIQUENESS 0.786 1.000 1.000 0.488 - 0.672 - - 0.937
VALIDITY 1.000  1.000 1.000 1.000 - 0.930 - - 0.915
DIVERSITY 0.583 0.847 1.000 0.826 - 0.656 - - 0.556
(RANDOM INITIAL)
Topl F 3.941 3923 4.015 3.924 4.092 4.098 4.232 4.157 4.276
Toprl0 F 3926 3.851 3.937 3.875 4.023 4.065 4.164 4.087 4.245
UNIQUENESS 0.821 0.956 1.000 0.477 0.690 0.575 0.986 0.349 0.949
VALIDITY 1.000  1.000 1.000 0.999 0.979 0.938 1.000 0.998 0.900
DIVERSITY 0.623 0.778 0.717 0.819 0.640 0.570 0.581 0.653 0.529
(BEST INITIAL)

Topl F 4.583  4.329 4.582 4.420 - 4.699 - - 4.699
Toprl0F 4.582 4.132  4.472 4.181 - 4.564 - - 4.628
UNIQUENESS 0.729  1.000 1.000 0.432 - 0.678 - - 0.942
VALIDITY 1.000 1.000 1.000 0.999 - 0.913 - - 0.790
DIVERSITY 0.424  0.792  0.630 0.788 - 0.600 - - 0.491

Table 1. UNCONSTRAINED MOLECULAR DESIGN RESULTS, OBJECTIVES: QED?1 + SA| + DRD2] + GSK33 | + INK3% 175 / 201



MO-LLM is also a general framework

Circle Packing (n=26, sum=2.634292)
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MO-LLM is also a general framework

MOO-LLM reach world record on a serials of problems:

1. Structure design.
2. Math discovering.

3. Some new results released soon ..

Table 2: Comparison of results for the circle packing problem.

Circle packing n=26

Circle packing n=32

AlphaEvolve 2.635863 ~ 2.937
FICO Xpress 2.635916 -
OpenEvolve 2.635977 -
MO-LLM (Ours) 2.635983 ~ 2.939
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MOO Molecule Diffusion model: [61]

V2. log pi(zt|y) = Vg, log pt(zt) + Vy, log p:(y|z:)

valid molecules certain property
e DPS (Diffusion Posterior Sampling):

R 1 -
Zp = EZONP(ZO\Zt)[ZO] = —=(2¢ + (1 — a¢) Vg, log pe(z¢)).

5

t=950 t=800 t=700 t=600 t=500 t=400 =350 t=250 t=200 t=150 ¢t=0

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, >

Phase 1. Phase 2
t € [1000, 400] t € [400,0]
chaotic stage, invalid molecules semantic stage, valid molecules

Figure 16: Caption
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A two step diffusion model

z; < z; + Vy, log pe(zt) + V3, log pe(y1]2t)

-~
valid molecules property 1 guidance

z; < 2 + Vg, log pr(zt) + V3, log pe(y2|zt)

valid molecules property 2 guidance
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MOO diffusion results

Multi-objective Tasks Metrics Baselines

Property 1 Property 2 Correlation | MAE | | Conditional EDM EEGSDE MuDM
Ac (meV) 4 (D) 034 | MAET | 683 563 554
| MAE2 | 1.130 0.866  0.578
o (Bohr®) 4 (D) 024 | MAET | 2.760 2610 1.326
| MAE2 | 1.158 0.855 0519
enomo (meV)  epymo (meV) 0.22 ‘ MAE1 ‘ 372 3% e
| MAE2 | 594 517 455
cLuno (meV) 4 (D) 040 | MAET | 610 526 575
| MAE2 | 1.143 0.860  0.497
cLumo (meV)  Ae (meV) 0.89 IMAEL | 1097 346 361
| MAE2 | 712 589 228
enomo (meV)  Ae (meV) -0.24 | MAEL | 78 367 262
| MAE2 | 655 323 489

Figure 17: MO diffusion results.

The improvement stems from data limitations; the dataset could support training a clean

classifier, but not a more demanding conditional diffusion model.
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HN-GFN [62]1 3nd MO-Gflownet [63]

Core idea: Distribution of P(x) is

proportional to reward R(x).

Step 1, sample a random preference A from
the Dirichlet distribution.
Step 2, optimize the objective

a _ Z, ()‘) Hs%s/ ‘rP (5/|57/\;0) 2
L(7, A 0) = (Iog R(9x|>\) HHS/GGT ':;(SIS’,/\:G)>

1. Pg(s|s’,0) is usually set as uniform
distribution.

2. Learnable parameters: Forward
distribution.

[62] Y. Zhu, J. Wu, C. Hu, et al., “Sample-efficient multi-objective molecular optimization with GFlowNets,” in Conference on Neural Information
Processing Systems, 2023.

[63] M. Jain, S. C. Raparthy, A. Hernandez-Garcia, et al., “Multi-objective GFlowNets,” in International Conference on Machine Learning, 2023. 181 /221



From single objective Gflownet to MO-Gflownet

Algorithm 2 Hypernetwork Training Loop with Explicit Update

1: fori=1to N do

2 Sample a batch of random preference vectors A ~ p(\).

3: Compute the scalarized reward R(x; A) = g(R(x), \).

4: Update hypernetwork parameters ¢ using gradient descent on loss L:
¢+ ¢ —nV4L(05(N))

5: end for
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MO-Gflownet

results

Hypervolume

Hypervlume
& B

3

200 300 400 500 600 700 800 900 1000
Total Oracle Evaluations

(a) GSK34 + JNK3

200 300 400 500 600 700 80O 900 1000
Total Oracle Evaluations

(b) GSK34 + JNK3 + QED + SA

Figure 3: Optimization performance (hypervolume) over MOBO loops.

Table 2: Diversity for different methods in MOBO scenarios.

Div (1)
GSK3j3 +JNK3  GSK33 + JNK3 + QED + SA
Graph GA 0.347 £ 0.059 0.562 +0.031
MARS 0.653 +0.072 0.754 £ 0.027
P-MOCO 0.646 + 0.008 0.350 +0.130
HN-GFN 0.810 + 0.003 0.744 + 0.008
HN-GFN w/ hindsight ~ 0.793 + 0.007 0.738 +0.009
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Comments on MOO AIl4S

Multiobjective optimization is important:

1. Real world design itself is multiobjective or even many-objective.

2. The advantage of MOO is for design. Using MOO, it is possible to generate more
diverse molecules.

Some further directions

1. Multi-fidelity, expensive optimization.

2. (Active learning) From simulation to real experiments, using simulation results to
guide the design of real-world experiments.
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6.6 Open-Source Libraries
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6.6 Open-Source Libraries
6.6.1 LibMOON
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LibMOON [64]

LibMOON: A Gradient-based MultiObjective
OptimizatioN Library in PyTorch

Xiaoyuan Zhang"‘, Liang Zhao*, Yingying Yu*®, Xi Lin®*, Yifan Chen®,
Han Zhao?, Qingfu Zhang**
* CityUHK, ® HKBU, © UIUC.

[64] X. Zhang, L. Zhao, Y. Yu, et al., “LibMOON: A gradient-based multiobjective optimization library in PyTorch,” in Conference on Neural
Information Processing Systems, 2024.
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LibMOON supported solvers and problems

MOO solver Synthetic
+ EPO « ZIDT
+ HVGrad ( « DTLZ
+ MOO-SVGD ... « MAF ...

PSL solver Multitask Learning

+ EPO-based « Faimess classification
* PMGDA-based = Multiobjective classification
« LoRA ... » Multiobjective machine leaming

MOBO solver ( Real World
* PSL-MOBO :

- + Hatch cover design

* PSL-DirHVEI + Rocket injector design
* DirHV-EGO ...

+ Car cab design ...

1. Problems classes.
2. Solvers classes.

3. Core solvers classes.
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Any preference-based MQOO is a base PSL solver

The gradient of PSL can be decomposed into three parts:

Olpst _ Ey 08 if 29 (9)
o Pire) of 96 P
~—— ~~ ~~ ~—
1xD 6:(1xm) B:(mxn) C:(nxD)
1. %gf)\ -> which core solver is used.
~~
&:(1xm)
of . . o
2. 2 : How to calculate the Jacobian matrix, 0-order optimization or bp.
B:(mxn)
00
3. % .. the PSL model, hypernetwork or LoRA.
~~
C:(nxD)
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LibMOON examples (PSL — synthetic problem)

Generate an infinite set of solutions.

problem = get_problem(problem_name=args.problem_name, n_var=args.n_var)

solver = BasePSLSolver (problem, batch_size=args.batch_size, device=args.device, lr=args.lr, epoch=args.epoch,
solver_name=args.solver_name, use_es=False)

model, loss_history = solver.solve()

Generate a finite set of solutions

problem = get_problem(problem_name=args.problem_name, n_var=args.n_var)

prefs = get_prefs(n_prob=args.n_prob, n_obj = problem.n_obj,
core_solver = EPOCore(n_var=problem.n_var, prefs=prefs)

solver = GradBaseSolver(step_size=args.step_size,
res =

mode=’uniform’, clip_eps=1le-2)

epoch=args.epoch, tol=args.tol, core_solver=core_solver)
solver.solve (problem=problem,x=synthetic_init (problem, prefs), prefs=prefs)
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LibMOON examples

(MOO - MTL)

model = model_from_dataset (args.problem_name)

num_param = numel (model)

core_solver = EPOCore(n_var=num_param, prefs=prefs)

solver = GradBaseMTLSolver (problem_name=args.problem_name, step_size=args.step_size, epoch=args.epoch, core_s
batch_size=args.batch_size, prefs=prefs)

res = solver.solve()

(PSL - MTL)

core_solver = EPOCore(n_var=problem.n_var, prefs=prefs)
solver = GradBasePSLMTLSolver(problem_name=args.problem_name, batch_size=args.batch_size,
step_size=args.step_size, epoch=args.epoch,

device=device, core_solver=core_sol
train_res = solver.solve ()
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6.6 Open-Source Libraries

6.6.2 LibMTL
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LibMTL [6]

A PyTorch Library for Multi-Task Learning (2.4K stars, JMLR)

% LibMTL pusic @ Unwaten 18~

Baijong:Li e requirement 4336804 -3 months 590 D) 180 Commits
= ubuTL update requirement 3months ago
= oocs pda

= cramples update requiremen

- tests update test

O sitatiributes Create years ago
[ readinedocsymi Tast year

O ravisymi

D) UcENSE

[ REAOMEmA

[ pyprojectom! support for st IBMTL using poetry (many thanks t.. 4 months ago.
[ requirementstxt update reauire 3months ago
0 sewppy update requirement 3months ago
(1) README & MTlicense 2 =

LibMTL

¥ ok 25 - Starred 2.4k

About
APyTorch Library for Multi-Task
Learning

pyhon  deep-leaming  pytorch

0 Readme
®

MITficense

¥ 225forks

Report repository

Contributors 3
Baijiong-Lin Baijong Lir

Y ——
Languages

 Pyhon 1000

[65] B. Lin and Y. Zhang, “LibMTL: A Python library for deep multi-task learning,”

2023.

Journal of Machine Learning Research 24 (2023) 1-7 Submitted 4/22; Revised 7/23; Published 7/23

LibMTL: A Python Library for Deep Multi-Task Learning

Baijiong Lin®
The Hong Kong University of Science and Technology (Guangzhou)

BJ.LIN.EMAILGGMALL.COM

Yu Zhang! YU.ZHANG.UST@GMAIL.COM
Department of Computer Science and Engineering, Southern University of Science and Technology
Peng Cheng Laboratory

Editor: Alexandre Gramfort

Scan for details

Journal of Machine Learning Research, vol. 24, no. 209, pp. 1-7,
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Supported Methods and Datasets in LibMTL

support 26 optimization strategies, 8 architectures, and 6 datasets

Optimization Strategies
Equal Weighting (EW)

Gradint Normalization (Gradorm)
Uncertainty Weights (U)

MODA (oficll code)

Dynamic Weight Average (DWA) (ffcial code)

Geometric Loss Strategy (GLS)

Projecting Conflcting Gradient (°CGrad)
Gradient sign Dropout (GradDrop)
Impartial Mult-Task Learning (MTL)

Gradient Vaceine (GradVac)

Confict-Averse Gradient descent (CAGrad) (ofical

MomL
Nash-MTL (official code)
Random Loss Weighting (RLW)

Aut

mbda (official code)

Moco

Aligned-MTL (offcial code)

FAMO (offcial code)

SOMGrad (offc

de)
Moo (offical code)
FoRUM

STCH (ofical code)
ExcessTL (officil code)
FaitGrad (oficial code)
LEN

UPGrad (official code)

Venues
icmL 2018
cver2018
Neus 2018
cver2019

CVPR 2010
Workshop

NeurPs 2020
NeurPs 2020
R 2021
cR 2021

NeurlPs 2021

NeurPs 2021
oML 2022
MR 2022
MR 2022
Ictr2023

cver2023

NewrPs 2023
NewrPs 2023
NeurPs 2023
EcaI2024
oML 2024
oML 2024
oML 2024
ankiv

ankiv

Arguments

—vetghting

—weighting

weighting

—veighting

—veighting

—veighting

—weighting
—vetghting
—vetghting
—vetghting
—vetohting

—weighting

—veighting

weighting
—weighting
—weighting
—weighting
Atigned T
—veignting
—weighting
—velghting
—velghting
—veighting
—veighting
~weighting
~—weighting

—weighting

o

Gradiorn

s

Perad

Gradorop

L

Gradvac

rad

o
Nash_¥TL
aw
AutoLasbda

Hoco

0
somcrad
Mado
Form
ston
ExcesshL
FairGrad
o8

wGrad

Architectures

Hard Parameter Sharing (HPS)

Cross-stitch Networks (Cros:

itch)
Mutti-gate Mixture-of-Experts (MMoE)
Multi-Task Attention Network (MTAN) (official code)

Customized Gate Control (CGC), Progressive Layered
Extraction (PLE)

Learning to Branch (LTE)

DSelect-k (official code)

Task
Datasets Probl
ataset roblems s
NYUv2 Scene Understanding 3
Cityscapes  Scene Understanding 2
Office-31 Image Recogrition 3
Image Recognition 4
Molecular Property "
awe N
aue Prediction (default
Paraphrase
dentifcation SEatmy

Venues
e 1993
cver 2016
K0D 2018

PR 2019

ACM Recsys
2020

IcML 2020

NeurlPs 2021

Tasks

Semantic
Segmentation+
Depth Estimation+
Surface Normal
Prediction
Semantic
Segmentation+
Depth Estimation

Classification

Classification

Regression

Classification

Arguments
—arch Hps,
—arch Cross._stitch
—arch MmioE
—arch MTAN

-arch CGC, =-arch
PLE

—arch LTB

—arch Dselect_k

multi- Supported

input Backbone
M ResNets0/

SegNet

x ResNet50
v ResNet18
v ResNet18
x GNN
v Bert
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Modular Design in LibMTL

Dataloader
prepare the data, including data pre-
processing, loading, and so on

~ @@

Y
LibMTL.loss

define the loss functions for each task,
e.g., CELoss (cross-entropy
loss), KLDivLoss (KL divergence loss)

)

LibMTL.metrics
define the metrics for each task, e.g..
AccMetric (accuracy), L1Metric (mean

\, /

\ MTL Problem

/ 777777 j

absolute error)

| —

easy-to-use and well-extensible:
® customize your own MTL problem and use existing MTL methods implemented

LibMTL;

¢ develop your own MTL methods (e.g., architecture and weighting) and make a fair

LibMTL.config
configuration parameters, e.g.,
multi_input, rep_grad, seed, gpu_id, and
hyper-parameters for weighting or
architecture

LibMTL.Trainer
a unified, easy-to-use, and extensible
Imming framework for multi-task leaming

LibMTL.utils
set_random_seed, set_device,
count_parameters, count_improvement,

MTL Model

LibMTL.architecture
architectures, e.g., HPS, Cross._stitch,
MMoE, MTAN, CGC, PLE, LTB, DSelect-
3

LibMTL.weighting
optimization strategies, e.g., EW,
GradNorm, UW, MGDA, DWA, GLS,
PCGrad, GradDrop, IMTL, GradVac,
CAGrad, RLW, Nash-MTL

LibMTL.model
backbones, .g., resnet18, resnet34,
resnets0, resnet101, resnexts0_32xdd,
resnext101_32x8d, wide_resnets0,
wide_resnet_101, resenet_dilated

comparison with existing methods on the widely-used benchmark datasets.



Modular Design in LibMTL

Dataloader
epfire the data, including data pre-
brocessing, loading, and so on

LibMTL.loss

define the loss functions for each task,
e.g., CELoss (cross-entropy

loss), KLDivLoss (KL divergence loss)

|7 MTL Problem

easy-to-use and well-extensible:

LibMTL.config
configuration parameters, e.g.,
multi_input, rep_grad, seed, gpu_id, and
hyper-parameters for weighting or
architecture

R

LibMTL.Trainer
a unified, easy-to-use, and extensible
training framework for multi-task learming

—L

LibMTL.utils

set_random_seed, set_device,

count_parameters, count_improvement,

- @@

MTL Model

LibMTL.architecture
architectures, e.g., HPS, Cross_stitch,
MMoE, MTAN, CGC, PLE, LTB, DSelect-
K

LibMTL.weighting
optimization strategies, e.q., EW,
GradNorm, UW, MGDA, DWA, GLS,
PCGrad, GradDrop, IMTL, GradVac,
CAGrad, RLW, Nash-MTL

LibMTL.model
backbones, e.g., resnet18, resnet34,
resnet50, resnet101, resnexts0_32xdd,
resnext101_32x8d, wide_resnet50,
wide_resnet_101, resenet_dilated

® customize your own MTL problem and use existing MTL methods implemented

LibMTL;

¢ develop your own MTL methods (e.g., architecture and weighting) and make a fair

comparison with existing methods on the widely-used benchmark datasets.

n



Modular Design in LibMTL

Dataloader
prepare the data, including data pre-
processing, loading, and so on

T
LibMTL.loss
define the loss functions for each task,
e.g., CELoss (cross-entropy
loss), KLDivLoss (KL divergence loss)

.
- @@ S 4
) ——
LibMTL.metrics /
define the metrics for each task, e.g.,

AccMetric (accuracy), L1Metric (mean
absolute error)

| —

\ MTL Problem

easy-to-use and well-extensible:

multi_input, rep_grad, seed, gpu_id, and
hyper-parameters for weighting or
architecture
\ l

LibMTL.config

configuration parameters, e.q.,

LibMTL.Trainer
a unified, easy-to-use, and extensible
m; ining framework for multi-task learming

I

LibMTL.utils
set_random_seed, set_device,
count_parameters, count_improvement,

LibMTL.architectixe
architectures, e.g., HPS, Cross Witch,
MMoE. MTAN, CGC, PLE, LTB, DS\

LibMTL.weighting
optimization strategies, e.q., EW,
GradNorm, UW, MGDA, DWA, GLS,
PCGrad, GradDrop, IMTL, GradVac,
CAGrad, RLW, Nash-MTL

MTL Model

LibMTL.model
backbones, e.g., resnet18, regflet3d,
resnet50, resnet101, resnexyf0_32xad,

® customize your own MTL problem and use existing MTL methods implemented

LibMTL;

¢ develop your own MTL methods (e.g., architecture and weighting) and make a fair
comparison with existing methods on the widely-used benchmark datasets.



Take HPS as An Example

£l £2 é E] E?_
_ N
‘ Decoder ‘ Decoder E ‘ Decoder ‘ Decoder
o Bl [~ o LibMTL.archi_tecture: hard
; p parameter sharing (HPS);
| Encoder | - Encoder ® LibMTL.model: ResNet/Transformers
¥ : 7 for encoder, a linear layer for decoder;
l ® LibMTL.weighting: the optimization
, lask-sharing ——>» task-specific Strategy (e.g., EW and MGDA) for
forward forward

handling multiple losses;
® single-input problem (left), e.g.,

molecular property prediction;
® multi-input problem (right), e.g., image
classification. 108 /221



Welcome to use and contribute!
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Overview

7. Open Challenges and Future Directions
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Tutorial Part 7:
Open Challenges and Future Directions
Weiyu Chen
HKUST

August 29, 2025
|

:
1JCAA2025

Guangzhou August 29-31
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Challenge 1: Theoretical Understanding

Problem:

® The theoretical foundations of many practical multi-objective deep learning methods
are not fully understood.

® Research has mainly focused on convergence, with less attention on generalization
error, which is crucial for real-world performance.

Future Direction:

® Develop broader, algorithm-agnostic generalization analyses.

® Theoretically investigate how network design choices affect Pareto set approximation.
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Challenges 2 & 3: Efficiency and Scalability

Reducing Gradient Balancing Costs
¢ Problem: Gradient balancing methods, while effective, have significant
computational overhead.

® Future Direction: Integrate gradient balancing with simpler methods like linear
scalarization to reduce costs and enable large-scale use.

Dealing with a Large Number of Objectives
® Problem: The preference vector space grows exponentially with more objectives,
making random sampling ineffective for learning the Pareto set.
® Future Direction:

® Develop efficient sampling strategies for high-dimensional preference spaces.
® Explore methods to automatically reduce or merge objectives based on their properties.
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Challenge 4: Distributed Training

Problem:
® Most current MOO algorithms are designed for a single GPU or machine.

® Scaling to multi-GPU and distributed environments is critical as models and datasets
grow, but it introduces unique challenges not seen in single-objective optimization.

Future Directions:
¢ Efficient Communication: Design methods for efficient gradient distribution and
synchronization across multiple GPUs/nodes.
® Privacy-Preserving MOOQO: Develop techniques for collaborative training when data
for different objectives is on separate devices and cannot be shared.
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Challenge 5: Advancements in LLMs

Problem:

® Current MOO applications for LLMs are mostly concentrated on the Reinforcement
Learning from Human Feedback (RLHF) stage.

® User preferences are often simplified into a basic preference vector, which may not
capture the complexity of human needs.

Future Directions:

e Expand MOOQO Application: Apply MOO techniques to other stages of the LLM
lifecycle, to better align models from the start.

¢ Advanced Preference Modeling: Explore more sophisticated methods to represent
and incorporate complex and nuanced user preferences.
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Challenge 6: Application in More Scenarios

The Untapped Potential:

® Most deep learning problems are inherently multi-objective, as models are evaluated
on multiple criteria.

® These criteria often create natural trade-offs that are perfect candidates for MOO.

Future Direction:

e Actively leverage MOO methods to explicitly navigate these trade-offs in a wider
range of deep learning applications.

® Move from single-metric optimization to a more holistic, multi-objective approach to
model development.
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THANK YOQOU!

Weiyu Chen, Baijiong Lin, Xiaoyuan Zhang, Xi Lin, Han Zhao

|

:
IJCAAL2025

Guangzhou August 29-31 Scan for our survey!

*We sincerely thank Yiheng Zhu (ZJU) and Yifei Shen (MSRA) for their valuable feedback on the

“Applications in Al4Science” section.
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